Skip to main content
Log in

Buckling analysis of functionally graded plates subjected to combined in-plane loads

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The displacement field components of functionally graded plates (FGPs) couple the equilibrium equations due to the bending-extension interaction. There is no general study of FGPs buckling loads subjected to the combination of all in-plane loads in the literature. This study develops an analytical approach to finding the buckling coefficients of FGPs under combined biaxial and shear loads. The generalized integral transform technique (GITT) is simultaneously applied to the coupled buckling equations for the first time. Then, the partial differential equations are transformed into a set of linear equations, leading to the corresponding eigenvalue problem, which may be coded in Python’s programming language. The uniaxial (pure) buckling coefficients are initially obtained considering the power law and the rule of mixture approximations (including the Voigt, Modified, or Reuss models). Then, some interaction curves are developed for the biaxially and multi-axially loaded plates. The interaction curves are normalized versus the uniaxial buckling coefficient for fully clamped plates, so they only depend on the plate aspect ratio. Accordingly, a step-by-step procedure is presented for all loading states, including compression–compression–shear (CCS), compression–tension–shear (CTS or TCS), and tension–tension–shear loads (TTS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Swaminathan K, Naveenkumar DT, Zenkour AM, Carrera E (2015) Stress, vibration and buckling analyses of FGM plates—a state-of-the-art review. Compos Struct 120:10–31

    Article  Google Scholar 

  2. Hassan Ahmed Hassan A, Kurgan N (2019) A review on buckling analysis of functionally graded plates under thermo-mechanical loads. Int J Eng Appl Sci 11(1):345–368

    Google Scholar 

  3. Chi S-H, Chung Y-L (2006) Mechanical behavior of functionally graded material plates under transverse load—part I: analysis. Int J Solids Struct 43(13):3657–3674

    Article  MATH  Google Scholar 

  4. Ali EY, Yared SB (2019) Analytical and numerical buckling analysis of rectangular functionally–graded plates under uniaxial compression. In: Proceedings of the annual stability conference structural stability research council St Louis, Missouri. St. Louis, Missouri

  5. Hachemi H, Bousahla Abdelmoumen A, Kaci A, Bourada F, Tounsi A, Benrahou Kouider H, Tounsi A, Al-Zahrani Mesfer M, Mahmoud SR (2021) Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position. Steel Compos Struct 39(1):51–64

    Google Scholar 

  6. Bouafia K, Selim Mahmoud M, Bourada F, Bousahla Abdelmoumen A, Bourada M, Tounsi A, Adda Bedia EA, Tounsi A (2021) Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model. Steel Compos Struct 41(4):487–503

    Google Scholar 

  7. Kouider D, Kaci A, Selim Mahmoud M, Bousahla Abdelmoumen A, Bourada F, Tounsi A, Tounsi A, Hussain M (2021) An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core. Steel Compos Struct 41(2):167–191

    Google Scholar 

  8. Tahir SI, Chikh A, Tounsi A, Al-Osta MA, Al-Dulaijan SU, Al-Zahrani MM (2021) Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos Struct 269:114030

    Article  Google Scholar 

  9. Zaitoun MW, Chikh A, Tounsi A, Al-Osta MA, Sharif A, Al-Dulaijan SU, Al-Zahrani MM (2022) Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment. Thin-Walled Struct 170:108549

    Article  Google Scholar 

  10. Huang Y, Karami B, Shahsavari D, Tounsi A (2021) Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch Civil Mech Eng 21(4):139

    Article  Google Scholar 

  11. Bellifa H, Selim MM, Chikh A, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Al-Zahrani MM, Tounsi A (2021) Influence of porosity on thermal buckling behavior of functionally graded beams. Smart Struct Syst 27(4):719–728

    Google Scholar 

  12. Ganapathi M, Prakash T, Sundararajan N (2006) Influence of functionally graded material on buckling of skew plates under mechanical loads. J Eng Mech 132(8):902–905

    Google Scholar 

  13. Sharma K, Kumar D (2017) Elastoplastic analysis of FGM plate with a central cutout of various shapes under thermomechanical loading. J Therm Stresses 40(13):1417–1441

    Article  Google Scholar 

  14. Sharma K, Kumar D (2017) Elastoplastic stability and failure analysis of FGM plate with temperature dependent material properties under thermomechanical loading Latin. Am J Solids Struct 14(7):1361–1386

    Article  Google Scholar 

  15. Suresh S, Mortensen A (1997) Functionally graded metals and metal-ceramic composites: part 2 thermomechanical behaviour. Int Mater Rev 42(3):85–116

    Article  Google Scholar 

  16. Shen H-s (2009) Functionally graded materials: nonlinear analysis of plates and shells. CRC Press, Boca Raton

    Google Scholar 

  17. Liew KM, Yang J, Kitipornchai S (2003) Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. Int J Solids Struct 40(15):3869–3892

    Article  MATH  Google Scholar 

  18. Liew KM, Yang J, Kitipornchai S (2004) Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties. J Appl Mech 71(6):839–850

    Article  MATH  Google Scholar 

  19. Shen H-S (2007) Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties. Int J Mech Sci 49(4):466–478

    Article  Google Scholar 

  20. Shen H-S, Li S-R (2008) Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties. Compos B Eng 39(2):332–344

    Article  Google Scholar 

  21. Naderi A, Saidi AR (2010) On pre-buckling configuration of functionally graded Mindlin rectangular plates. Mech Res Commun 37(6):535–538

    Article  MATH  Google Scholar 

  22. Morimoto T, Tanigawa Y, Kawamura R (2006) Thermal buckling of functionally graded rectangular plates subjected to partial heating. Int J Mech Sci 48(11):926–937

    Article  MATH  Google Scholar 

  23. Abrate S (2008) Functionally graded plates behave like homogeneous plates. Compos B Eng 39(1):151–158

    Article  Google Scholar 

  24. Javaheri R, Eslami MR (2002) Buckling of functionally graded plates under in-plane compressive loading. J Appl Math Mech 82(4):277–283

    MATH  Google Scholar 

  25. Zhang D-G, Zhou Y-H (2008) A theoretical analysis of FGM thin plates based on physical neutral surface. Comput Mater Sci 44(2):716–720

    Article  Google Scholar 

  26. Mohammadi M, Saidi AR, Jomehzadeh E (2010) Levy solution for buckling analysis of functionally graded rectangular plates. Appl Compos Mater 17(2):81–93

    Article  Google Scholar 

  27. Mohammadi M, Saidi AR, Jomehzadeh E (2010) A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges. Proc Inst Mech Eng C J Mech Eng Sci 224(11):1831–1841

    Article  Google Scholar 

  28. Wen PH, Aliabadi MH (2012) Analysis of functionally graded plates by meshless method: a purely analytical formulation. Eng Anal Boundary Elem 36(5):639–650

    Article  MathSciNet  MATH  Google Scholar 

  29. Latifi M, Farhatnia F, Kadkhodaei M (2013) Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion. Eur J Mech A Solids 41:16–27

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramu I, Mohanty SC (2014) Buckling analysis of rectangular functionally graded material plates under uniaxial and biaxial compression load. Proc Eng 86:748–757

    Article  Google Scholar 

  31. Farahmand H, Naseralavi SS, Iranmanesh A, Mohammadi M (2016) Navier solution for buckling analysis of size-dependent functionally graded micro-plates. Latin Am J Solids Struct 13:3161–3173

    Article  Google Scholar 

  32. Aydogdu M (2008) Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory. Compos Struct 82(1):155–157

    Article  Google Scholar 

  33. Shukla KK, Ravi Kumar KV, Pandey R, Nath Y (2007) Postbuckling response of functionally graded rectangular plates subjected to thermo-mechanical loading. Int J Struct Stab Dyn 07(03):519–541

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu T-L, Shukla KK, Huang JH (2007) Post-buckling analysis of functionally graded rectangular plates. Compos Struct 81(1):1–10

    Article  Google Scholar 

  35. Civalek O, Jalaei MH (2020) Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions. Aerosp Sci Technol 99:105753

    Article  Google Scholar 

  36. Duong HT, Phan HC, Tran TM, Dhar AS (2021) Assessment of critical buckling load of functionally graded plates using artificial neural network modeling. Neural Comput Appl 10:20

    Google Scholar 

  37. Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 2—buckling and free vibration. Int J Solids Struct 42(18):5243–5258

    Article  MATH  Google Scholar 

  38. Bodaghi M, Saidi AR (2010) Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory. Appl Math Model 34(13):3659–3673

    Article  MathSciNet  MATH  Google Scholar 

  39. Tati A (2021) Finite element analysis of thermal and mechanical buckling behavior of functionally graded plates. Arch Appl Mech 10:20

    Google Scholar 

  40. Uymaz B, Aydogdu M (2013) Three dimensional shear buckling of FG plates with various boundary conditions. Compos Struct 96:670–682

    Article  Google Scholar 

  41. Bakoura A, Bourada F, Bousahla Abdelmoumen A, Tounsi A, Benrahou Kouider H, Tounsi A, Al-Zahrani Mesfer M, Mahmoud SR (2021) Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method. Comput Concr 27(1):73–83

    Google Scholar 

  42. Rachid A, Ouinas D, Lousdad A, Zaoui FZ, Achour B, Gasmi H, Butt TA, Tounsi A (2022) Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs. Thin-Walled Struct 172:108783

    Article  Google Scholar 

  43. Asemi K, Shariyat M, Salehi M, Ashrafi H (2013) A full compatible three-dimensional elasticity element for buckling analysis of FGM rectangular plates subjected to various combinations of biaxial normal and shear loads. Finite Elem Anal Des 74:9–21

    Article  MATH  Google Scholar 

  44. Ye W, Liu J, Zhang J, Yang F, Lin G (2021) A new semi-analytical solution of bending, buckling and free vibration of functionally graded plates using scaled boundary finite element method. Thin-Walled Struct 163:107776

    Article  Google Scholar 

  45. Thai H-T, Choi D-H (2012) An efficient and simple refined theory for buckling analysis of functionally graded plates. Appl Math Model 36(3):1008–1022

    Article  MathSciNet  MATH  Google Scholar 

  46. Bateni M, Kiani Y, Eslami MR (2013) A comprehensive study on stability of FGM plates. Int J Mech Sci 75:134–144

    Article  Google Scholar 

  47. Meksi R, Benyoucef S, Mahmoudi A, Tounsi A, Adda Bedia EA, Mahmoud SR (2017) An analytical solution for bending, buckling and vibration responses of FGM sandwich plates. J Sandwich Struct Mater 21(2):727–757

    Article  Google Scholar 

  48. Mudhaffar IM, Tounsi A, Chikh A, Al-Osta MA, Al-Zahrani MM, Al-Dulaijan SU (2021) Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. Structures 33:2177–2189

    Article  Google Scholar 

  49. El Meiche N, Tounsi A, Ziane N, Mechab I, Adda Bedia EA (2011) A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int J Mech Sci 53(4):237–247

    Article  Google Scholar 

  50. Shariat BAS, Javaheri R, Eslami MR (2005) Buckling of imperfect functionally graded plates under in-plane compressive loading. Thin-Walled Struct 43(7):1020–1036

    Article  Google Scholar 

  51. Tung HV, Duc ND (2010) Nonlinear analysis of stability for functionally graded plates under mechanical and thermal loads. Compos Struct 92(5):1184–1191

    Article  Google Scholar 

  52. Chen XL, Liew KM (2004) Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads. Smart Mater Struct 13(6):1430–1437

    Article  Google Scholar 

  53. Shahrestani MG, Azhari M, Foroughi H (2018) Elastic and inelastic buckling of square and skew FGM plates with cutout resting on elastic foundation using isoparametric spline finite strip method. Acta Mech 229(5):2079–2096

    Article  MathSciNet  MATH  Google Scholar 

  54. BeikMohammadlou H, EkhteraeiToussi H (2017) Parametric studies on elastoplastic buckling of rectangular FGM thin plates. Aerosp Sci Technol 69:513–525

    Article  Google Scholar 

  55. Zhang J, Pan S, Chen L (2019) Dynamic thermal buckling and postbuckling of clamped-clamped imperfect functionally graded annular plates. Nonlinear Dyn 95(1):565–577

    Article  Google Scholar 

  56. Zhang JH, Liu X, Zhao X (2019) Symplectic method-based analysis of axisymmetric dynamic thermal buckling of functionally graded circular plates. Mech Compos Mater 55(4):455–466

    Article  Google Scholar 

  57. Xu G, Huang H, Chen B, Chen F (2017) Buckling and postbuckling of elastoplastic FGM plates under inplane loads. Compos Struct 176:225–233

    Article  Google Scholar 

  58. Ullah S, Zhong Y, Zhang J (2019) Analytical buckling solutions of rectangular thin plates by straightforward generalized integral transform method. Int J Mech Sci 152:535–544

    Article  Google Scholar 

  59. Jahanpour A, Kouhia R (2021) An explicit solution for inelastic buckling of rectangular plates subjected to combined biaxial and shear loads. Acta Mech 232(4):1641–1682

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang J, Zhou C, Ullah S, Zhong Y, Li R (2019) Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates. Appl Math Lett 92:8–14

    Article  MathSciNet  MATH  Google Scholar 

  61. He Y, An C, Su J (2020) Generalized integral transform solution for free vibration of orthotropic rectangular plates with free edges. J Braz Soc Mech Sci Eng 42(4):183

    Article  Google Scholar 

  62. Tamura I, Tomota Y, Ozawa H (1973) Strength and Ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength. In: Proceedings of the third international conference on strength of metals and alloys. Cambridge, Institute of Metals

  63. Bocciarelli M, Bolzon G, Maier G (2008) A constitutive model of metal-ceramic functionally graded material behavior: Formulation and parameter identification. Comput Mater Sci 43(1):16–26

    Article  Google Scholar 

  64. Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor and Francis Inc., Philadelphia

    Google Scholar 

  65. Whitney JM (1969) Shear buckling of unsymmetrical cross-ply plates. J Compos Mater 3(2):359–363

    Article  Google Scholar 

  66. Nilsson A, Liu B (2015) Vibro-acoustics, vol 1, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  67. Blevins RD (1979) Formulas for natural frequency and mode shape. Van Nostrand Reinhold Company, New York

    Google Scholar 

  68. Gartner JR, Olgac N (1982) Improved numerical computation of uniform beam characteristic values and characteristic functions. J Sound Vib 84(4):481–489

    Article  Google Scholar 

  69. Python Language Reference (2019) Python Software Foundation

  70. Shufrin I, Eisenberger M (2007) Shear buckling of thin plates with constant in-plane stresses. Int J Struct Stab Dyn 07(02):179–192

    Article  MATH  Google Scholar 

  71. Wu L-Y, Wu C-H, Huang H-H (2008) Shear buckling of thin plates using the spline collocation method. Int J Struct Stab Dyn 08(04):645–664

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Jahanpour.

Ethics declarations

Conflict of interest

There are no competing interests and funding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

If the in-plane loads are not applied in the neutral plane in an FGP, the in-plane and out-of-plane boundary conditions are coupled due to bending-extension interaction. Thus, four types of boundary conditions may be called clamped edges:

$$\begin{aligned}{} & {} C1:\, \, \, \, u=0,\, \, \, \, \, \, \, \, v=0,\, \, \, \, \, \, \, \, \, w=0,\, \, \, \, \, \, \frac{\partial w}{\partial x}=0, \end{aligned}$$
(29a)
$$\begin{aligned}{} & {} C2:\, \, \, \, N_{x}=0,\, \, \, \, \, \, \, \, v=0,\, \, \, \, \, \, \, \, \, w=0,\, \, \, \, \, \, \frac{\partial w}{\partial x}=0, \end{aligned}$$
(29b)
$$\begin{aligned}{} & {} C3:\, \, \, \, u=0,\, \, \, \, \, \, \, N_{xy}=0,\, \, \, \, \, \, \, \, \, w=0,\, \, \, \, \, \, \frac{\partial w}{\partial x}=0, \end{aligned}$$
(29c)
$$\begin{aligned}{} & {} C4:\, \, \, \, N_{x}=0,\, \, \, \, \, \, \, \, N_{xy}=0,\, \, \, \, \, \, \, \, \, w=0,\, \, \, \, \, \, \frac{\partial w}{\partial x}=0. \end{aligned}$$
(29d)

The C2 boundary conditions are considered in this study, as shown in Eqs. (16a–h).

Appendix B

Equations (30a–f) show the transformed terms of Eqs. (15a–c).

$$\begin{aligned}{} & {} \int _0^1 \int _0^1 {\left\{ {\begin{array}{l} \frac{\partial ^{2}u}{\partial \xi ^{2}} \\ \frac{\partial ^{2}u}{\partial \eta ^{2}} \\ \end{array}} \right\} {X_{1,m}\left( \xi \right) Y}_{1,n}\left( \eta \right) \textrm{d}\xi \textrm{d}\eta =-\left\{ {\begin{array}{l} \alpha _{1,m}^{2} \\ \beta _{1,n}^{2} \\ \end{array}} \right\} u_{mn}}, \end{aligned}$$
(30a)
$$\begin{aligned}{} & {} \int _0^1 \int _0^1 \left\{ {\begin{array}{l} {\begin{array}{l} \frac{\partial ^{2}v}{\partial \xi \partial \eta } \\ \frac{\partial ^{3}w}{{\partial \xi }^{3}}, \\ \end{array}} \\ \frac{\partial ^{3}w}{\partial \xi {\partial \eta }^{2}} \\ \end{array}} \right\} {X_{1,m}\left( \xi \right) Y}_{1,n}\left( \eta \right) \textrm{d}\xi \textrm{d}\eta \nonumber \\{} & {} \quad =\mathop {\sum }\limits _{r=1}^\infty \mathop {\sum }\limits _{s=1}^\infty \left\{ {\begin{array}{l} {\begin{array}{l} {\bar{v}}_{rs}H_{12,mr}L_{12,ns} \\ w_{rs}\left( \alpha _{1,m}^{2}H_{13,mr}+\alpha _{3,r}^{2}\delta _{13,mr} \right) \, K_{13,ns} \\ \end{array}} \\ w_{rs}\beta _{1,n}^{2}H_{13,mr}K_{13,ns} \\ \end{array}} \right\} , \end{aligned}$$
(30b)
$$\begin{aligned}{} & {} \int _0^1 \int _0^1 {\left\{ {\begin{array}{l} \frac{\partial ^{2}v}{\partial \xi ^{2}} \\ \frac{\partial ^{2}v}{\partial \eta ^{2}} \\ \end{array}} \right\} {X_{2,m}\left( \xi \right) Y}_{2,n}\left( \eta \right) \textrm{d}\xi \textrm{d}\eta =-\left\{ {\begin{array}{l} \alpha _{2,m}^{2} \\ \beta _{2,n}^{2} \\ \end{array}} \right\} {\bar{v}}_{mn}}, \end{aligned}$$
(30c)
$$\begin{aligned}{} & {} \int _0^1 \int _0^1 {\left\{ {\begin{array}{l} {\begin{array}{*{20}c} \frac{\partial ^{2}u}{\partial \xi \partial \eta }\\ \frac{\partial ^{3}w}{{\partial \xi }^{2}\partial \eta }\\ \end{array} } \\ \frac{\partial ^{3}w}{{\partial \eta }^{3}} \\ \end{array}} \right\} {X_{2,m}\left( \xi \right) Y}_{2,n}\left( \eta \right) \textrm{d}\xi \textrm{d}\eta } \nonumber \\{} & {} \quad =\mathop {\sum }\limits _{r=1}^\infty \mathop {\sum }\limits _{s=1}^\infty \left\{ {\begin{array}{l} {\begin{array}{*{20}c} u_{rs}H_{21,mr}L_{21,ns}\\ w_{rs}\alpha _{2,m}^{2}G_{23,mr}L_{23,ns}\\ \end{array} } \\ w_{rs}\left( \beta _{2,n}^{2}L_{23,ns}+\beta _{3,s}^{2}\delta _{23,ns} \right) G_{23,mr} \\ \end{array}} \right\} , \end{aligned}$$
(30d)
$$\begin{aligned}{} & {} \int _0^1 \int _0^1 {\left\{ {\begin{array}{l} \frac{\partial ^{4}w}{{\partial \xi }^{4}} \\ \frac{\partial ^{4}w}{{\partial \eta }^{4}} \\ \end{array}} \right\} X_{3,m}\left( \xi \right) Y_{3,n}\left( \eta \right) \textrm{d}\xi \textrm{d}\eta } =\left\{ {\begin{array}{l} \alpha _{3,m}^{4} \\ \beta _{3,n}^{4} \\ \end{array}} \right\} w_{mn}, \end{aligned}$$
(30e)
$$\begin{aligned}{} & {} \int _0^1 \int _0^1 {\left\{ {\begin{array}{l} {\begin{array}{l} {\begin{array}{l} \frac{\partial ^{3}u}{{\partial \xi }^{3}} \\ \frac{\partial ^{3}u}{\partial \xi {\partial \eta }^{2}} \\ \frac{\partial ^{3}v}{{\partial \xi }^{2}\partial \eta } \\ \frac{\partial ^{3}v}{{\partial \eta }^{3}} \\ \end{array}} \\ \frac{\partial ^{4}w}{{\partial \xi }^{2}{\partial \eta }^{2}} \\ \frac{\partial ^{2}w}{{\partial \xi }^{2}} \\ \frac{\partial ^{2}w}{\partial \xi \partial \eta } \\ \end{array}} \\ \frac{\partial ^{2}w}{{\partial \eta }^{2}} \\ \end{array}} \right\} X_{3,m}\left( \xi \right) Y_{3,n}\left( \eta \right) \textrm{d}\xi \textrm{d}\eta } \nonumber \\{} & {} \quad =\sum \limits _{r=1}^\infty \sum \limits _{s=1}^\infty \left\{ {\begin{array}{l} {\begin{array}{l} -u_{rs}\left( J_{31,mr}-\alpha _{3,m}^{2}\delta _{31,mr} \right) K_{31,ns} \\ -u_{rs}H_{31,mr}P_{31,ns} \\ -{\bar{v}}_{rs}I_{32,mr}L_{32,ns} \\ -{\bar{v}}_{rs}\left( Q_{32,ns}-\beta _{3,n}^{2}\delta _{32,ns} \right) G_{32,mr} \\ \end{array}} \\ w_{rs}I_{33,mr}P_{33,ns} \\ w_{rs}I_{33,mr}K_{33,ns} \\ w_{rs}H_{33,mr}L_{33,ns} \\ w_{rs}G_{33,mr}P_{33,ns} \\ \end{array}} \right\} , \end{aligned}$$
(30f)

where \(\alpha _{i,m}\) and \(\beta _{j,n}\); \(ij=1,2,3\) are defined in Eqs. (22a–d) and

$$\begin{aligned} G_{23,mr}= & {} \int _0^1 {X_{3,r}\left( \xi \right) X_{2,m}\left( \xi \right) \textrm{d}\xi =} 2\sqrt{2} \left[ 1+\left( -1 \right) ^{m+r} \right] \frac{m\pi \alpha _{3,r}^{2}}{m^{4}\pi ^{4}-\alpha _{3,r}^{4}}, \end{aligned}$$
(31a)
$$\begin{aligned} G_{32,mr}= & {} \int _0^1 {X_{2,r}\left( \xi \right) X_{3,m}\left( \xi \right) \textrm{d}\xi =} 2\sqrt{2} \left[ 1+\left( -1 \right) ^{m+r} \right] \frac{r\pi \alpha _{3,m}^{2}}{r^{4}\pi ^{4}-\alpha _{3,m}^{4}}, \end{aligned}$$
(31b)
$$\begin{aligned} G_{33,mr}= & {} \int _0^1 {X_{3,r}\left( \xi \right) X_{3,m}\left( \xi \right) \textrm{d}\xi =} \left\{ {\begin{array}{l} 1\, \,;\, \, m=r \\ 0\, \, \,;\, \, m\ne r \\ \end{array}} \right. , \end{aligned}$$
(31c)
$$\begin{aligned} H_{12,mr}= & {} \int _0^1 {X_{2,r}\left( \xi \right) X_{1,m}^{'}\left( \xi \right) \textrm{d}\xi =} \left\{ {\begin{array}{l} -m\pi \, \,;\, \, m=r \\ 0\, \, \, \, \, \, \, \, \,;\, \, m\ne r \\ \end{array}} \right. , \end{aligned}$$
(32a)
$$\begin{aligned} H_{21,mr}= & {} \int _0^1 {X_{1,r}\left( \xi \right) X_{2,m}^{'}\left( \xi \right) \textrm{d}\xi =} \left\{ {\begin{array}{l} m\pi \, \, \, \, \,;\, \, m=r \\ 0\, \, \, \, \, \, \, \, \,;\, \, m\ne r \\ \end{array}} \right. , \end{aligned}$$
(32b)
$$\begin{aligned} H_{13,mr}= & {} \int _0^1 {X_{3,r}\left( \xi \right) X_{1,m}^{'}\left( \xi \right) \textrm{d}\xi =-2\sqrt{2} \left[ 1+\left( -1 \right) ^{m+r} \right] \frac{m^{2}\pi ^{2}\alpha _{3,r}^{2}}{m^{4}\pi ^{4}-\alpha _{3,r}^{4}}}, \end{aligned}$$
(32c)
$$\begin{aligned} H_{31,mr}= & {} \int _0^1 {X_{1,r}\left( \xi \right) X_{3,m}^{'}\left( \xi \right) \textrm{d}\xi =2\sqrt{2} \left[ 1+\left( -1 \right) ^{m+r} \right] \frac{r^{2}\pi ^{2}\alpha _{3,m}^{2}}{r^{4}\pi ^{4}-\alpha _{3,m}^{4}}}, \end{aligned}$$
(32d)
$$\begin{aligned} H_{33,mr}= & {} \int _0^1 {X_{3,r}\left( \xi \right) X_{3,m}^{'}\left( \xi \right) \textrm{d}\xi =\left\{ {\begin{array}{l} 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,;\, m=r \\ \left[ 1-\left( -1 \right) ^{m+r} \right] \frac{4\alpha _{3,r}^{2}\alpha _{3,m}^{2}}{\alpha _{3,r}^{4}-\alpha _{3,m}^{4}}\, \,;\, m\ne r \\ \end{array}} \right. \, \, } \end{aligned}$$
(32e)
$$\begin{aligned} I_{32,mr}= & {} \int _0^1 {X_{2,r}\left( \xi \right) X_{3,m}^{''}\left( \xi \right) \textrm{d}\xi =} -2\sqrt{2} \left[ 1+\left( -1 \right) ^{m+r} \right] \frac{r^{3}\pi ^{3}\alpha _{3,m}^{2}}{r^{4}\pi ^{4}-\alpha _{3,m}^{4}}, \end{aligned}$$
(33a)
$$\begin{aligned} I_{33,mr}= & {} \int _0^1 {X_{3,r}\left( \xi \right) X_{3,m}^{''}\left( \xi \right) \textrm{d}\xi =} \left\{ {\begin{array}{l} c_\textrm{m}\alpha _{3,m}\left[ 2-c_\textrm{m}\alpha _{3,m} \right] \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,;m=r \\ \frac{4\alpha _{3,m}^{2}\alpha _{3,r}^{2}}{\alpha _{3,m}^{4}-\alpha _{3,r}^{4}}\left[ c_\textrm{m}\alpha _{3,m}-c_{r}\alpha _{3,r} \right] \left[ 1+\left( -1 \right) ^{m+r} \right] \, \,;m\ne r \\ \end{array}} \right. \nonumber \\ \end{aligned}$$
(33b)
$$\begin{aligned} J_{31,mr}= & {} \int _0^1 {X_{1,r}\left( \xi \right) X_{3,m}^{'''}\left( \xi \right) \textrm{d}\xi =} -2\sqrt{2} \left[ 1+\left( -1 \right) ^{m+r} \right] \frac{\alpha _{3,m}^{6}}{r^{4}\pi ^{4}-\alpha _{3,m}^{4}}, \end{aligned}$$
(34)
$$\begin{aligned} K_{13,ns}= & {} \int _0^1 {Y_{3,s}\left( \eta \right) Y_{1,n}\left( \eta \right) \textrm{d}\eta =} 2\sqrt{2} \left[ 1+\left( -1 \right) ^{n+s} \right] \frac{n\pi \beta _{3,s}^{2}}{n^{4}\pi ^{4}-\beta _{3,s}^{4}}, \end{aligned}$$
(35a)
$$\begin{aligned} K_{31,ns}= & {} \int _0^1 {Y_{1,s}\left( \eta \right) Y_{3,n}\left( \eta \right) \textrm{d}\eta =} 2\sqrt{2} \left[ 1+\left( -1 \right) ^{n+s} \right] \frac{s\pi \beta _{3,n}^{2}}{s^{4}\pi ^{4}-\beta _{3,n}^{4}}, \end{aligned}$$
(35b)
$$\begin{aligned} K_{33,ns}= & {} \int _0^1 {Y_{3,s}\left( \eta \right) Y_{3,n}\left( \eta \right) \textrm{d}\eta =} \left\{ {\begin{array}{l} 1\, \,;\, \, n=s \\ 0\, \, \,;\, n\ne s \\ \end{array}} \right. , \end{aligned}$$
(35c)
$$\begin{aligned} L_{12,ns}= & {} \int _0^1 {Y_{2,s}\left( \eta \right) Y_{1,n}^{'}\left( \eta \right) \textrm{d}\eta =} \left\{ {\begin{array}{l} n\pi \, \, \,;\, \, n=s \\ 0\, \, \, \, \, \,;\, \, n\ne s \\ \end{array}} \right. , \end{aligned}$$
(36a)
$$\begin{aligned} L_{21,ns}= & {} \int _0^1 {Y_{1,s}\left( \eta \right) Y_{2,n}^{'}\left( \eta \right) \textrm{d}\eta =} \left\{ {\begin{array}{l} -n\pi \, \,;\, \, n=s \\ 0\, \, \, \, \, \, \, \, \,;\, \, n\ne s \\ \end{array}} \right. , \end{aligned}$$
(36b)
$$\begin{aligned} L_{23,ns}= & {} \int _0^1 {Y_{3,s}\left( \eta \right) Y_{2,n}^{'}\left( \eta \right) \textrm{d}\eta =-2\sqrt{2} \left[ 1+\left( -1 \right) ^{n+s} \right] \frac{n^{2}\pi ^{2}\beta _{3,s}^{2}}{n^{4}\pi ^{4}-\beta _{3,s}^{4}}}, \end{aligned}$$
(36c)
$$\begin{aligned} L_{32,ns}= & {} \int _0^1 {Y_{2,s}\left( \eta \right) Y_{3,n}^{'}\left( \eta \right) \textrm{d}\eta =2\sqrt{2} \left[ 1+\left( -1 \right) ^{n+s} \right] \frac{s^{2}\pi ^{2}\beta _{3,n}^{2}}{s^{4}\pi ^{4}-\beta _{3,n}^{4}}}, \end{aligned}$$
(36d)
$$\begin{aligned} L_{33,ns}= & {} \int _0^1 {Y_{3,s}\left( \eta \right) Y_{3,n}^{'}\left( \eta \right) \textrm{d}\eta =\, \left\{ {\begin{array}{l} 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,;\, n=s \\ \left[ 1-\left( -1 \right) ^{n+s} \right] \frac{4\beta _{3,s}^{2}\beta _{3,n}^{2}}{\beta _{3,s}^{4}-\beta _{3,n}^{4}}\, \, \, \, \, \,;\, n\ne s \\ \end{array}} \right. \, \, \, \, \, \, }, \end{aligned}$$
(36e)
$$\begin{aligned} P_{31,ns}= & {} \int _0^1 {Y_{1,S}\left( \eta \right) Y_{3,n}^{''}\left( \eta \right) \textrm{d}\eta =} -2\sqrt{2} \left[ 1+\left( -1 \right) ^{n+s} \right] \frac{s^{3}\pi ^{3}\beta _{3,n}^{2}}{s^{4}\pi ^{4}-\beta _{3,n}^{4}}, \end{aligned}$$
(37a)
$$\begin{aligned} P_{33,ns}= & {} \int _0^1 {Y_{3,s}\left( \eta \right) Y_{3,n}^{''}\left( \eta \right) \textrm{d}\eta =} \left\{ {\begin{array}{l} c_{n}\beta _{3,n}\left[ 2-c_{n}\beta _{3,n} \right] \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,;n=s, \\ \frac{4\beta _{3,n}^{2}\beta _{3,s}^{2}}{\beta _{3,n}^{4}-\beta _{3,s}^{4}}\left[ c_{n}\beta _{3,n}-c_{s}\beta _{3,s} \right] \left[ 1+\left( -1 \right) ^{n+s} \right] \, \, \,;n\ne s \\ \end{array}} \right. , \end{aligned}$$
(37b)
$$\begin{aligned} Q_{32,ns}= & {} \int _0^1 {Y_{1,s}\left( \eta \right) Y_{3,n}^{'''}\left( \eta \right) \textrm{d}\eta =} -2\sqrt{2} \left[ 1+\left( -1 \right) ^{n+s} \right] \frac{\beta _{3,n}^{6}}{s^{4}\pi ^{4}-\beta _{3,n}^{4}}, \end{aligned}$$
(38)
$$\begin{aligned} \delta _{13,mr}= & {} \delta _{31,mr}=2\sqrt{2} \left[ 1+\left( -1 \right) ^{m+r} \right] , \end{aligned}$$
(39a)
$$\begin{aligned} \delta _{23,ns}= & {} \delta _{32,ns}=2\sqrt{2} \left[ 1+\left( -1 \right) ^{n+s} \right] , \end{aligned}$$
(39b)

Appendix C

In Table 13, pure shear buckling coefficients are shown for FPGs with \(\phi =1,\, 4\), \(p=1,\, 2,\, 5\), \(\lambda =50,\, 100,\, 125\), and \(\nu =0.1,\, \, 0.2,\, \, 0.3\). The results show that the buckling coefficient has no sensitivity to the plate’s thickness ratio \(\left( \lambda \right) \) and Poisson’s ratio \(\left( \nu \right) \) to at least the fourth significant digits.

Table 13 Pure shear buckling coefficient of FGPs (Voigt model) with various parameters

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanpour, A. Buckling analysis of functionally graded plates subjected to combined in-plane loads. J Eng Math 138, 2 (2023). https://doi.org/10.1007/s10665-022-10243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-022-10243-6

Keywords

Navigation