Skip to main content
Log in

Generalized integral transform solution for free vibration of orthotropic rectangular plates with free edges

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Free vibration of orthotropic rectangular thin plates of constant thickness with two opposite edges clamped and one or two edges free is analyzed by generalized integral transform technique. Numerically stable eigenfunctions in exponential function forms of Euler–Bernoulli beams with appropriate boundary conditions are adopted for each direction of the plate. The governing fourth-order partial differential equation for the mode function of free vibration is transformed into a system of linear equations, by integral transform in both directions of the rectangular plate. The boundary conditions at free edges are satisfied exactly by considering the terms generated in the transformed equations by integration by parts, which are absent in the equations by traditional Rayleigh–Ritz method. The natural frequencies of free vibration of orthotropic rectangular thin plates obtained by the proposed integral transform solution are compared with available results in the literature and numerical solutions by finite element analysis, showing excellent agreement and high convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leissa AW (1973) Free vibration of rectangular-plates. J Sound Vib 31(3):257

    Article  Google Scholar 

  2. Bhat RB (1985) Natural frequencies of rectangular-plates using characteristic orthogonal polynomials in Rayleigh–Ritz methods. J Sound Vib 102(4):493

    Article  Google Scholar 

  3. Dickinson SM, Di Blasio A (1986) On the use of orthogonal polynomials in the Rayleigh–Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular-plates. J Sound Vib 108(1):51

    Article  Google Scholar 

  4. Mizusawa T (1986) Natural frequencies of rectangular-plates with free edges. J Sound Vib 105(3):451

    Article  Google Scholar 

  5. Shu C, Du H (1997) A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates. Int J Solids Struct 34(7):837

    Article  Google Scholar 

  6. Rossi RE, Bambill DV, Laura PAA (1998) Vibrations of a rectangular orthotropic plate with a free edge: a comparison of analytical and numerical results. Ocean Eng 25(7):521

    Article  Google Scholar 

  7. Kshirsagar S, Bhaskar K (2008) Accurate and elegant free vibration and buckling studies of orthotropic rectangular plates using untruncated infinite series. J Sound Vib 314(3–5):837

    Article  Google Scholar 

  8. Khov H, Li WL, Gibson RF (2009) An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions. Compos Struct 90(4):474

    Article  Google Scholar 

  9. Eftekhari SA, Jafari AA (2012) A novel and accurate Ritz formulation for free vibration of rectangular and skew plates. J Appl Mech Trans ASME 79(6):064504

    Article  Google Scholar 

  10. Eftekhari SA, Jafari AA (2012) High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions. Appl Math Comput 219(3):1312

    MathSciNet  MATH  Google Scholar 

  11. Banerjee JR, Papkov SO, Liu X, Kennedy D (2015) Dynamic stiffness matrix of a rectangular plate for the general case. J Sound Vib 342:177

    Article  Google Scholar 

  12. Liew KM, Lam KY, Chow ST (1990) Free-vibration analysis of rectangular-plates using orthogonal plate function. Comput Struct 34(1):79. https://doi.org/10.1016/0045-7949(90)90302-i

    Article  MATH  Google Scholar 

  13. Xing YF, Xu TF (2013) Solution methods of exact solutions for free vibration of rectangular orthotropic thin plates with classical boundary conditions. Compos Struct 104:187

    Article  Google Scholar 

  14. Liang X, Wang Z, Wang L, Izzuddin BA, Liu G (2015) A semi-analytical method to evaluate the dynamic response of functionally graded plates subjected to underwater shock. J Sound Vib 336:257

    Article  Google Scholar 

  15. Liang X, Wu ZJ, Wang LZ, Liu GH, Wang ZY, Zhang WG (2015) Semianalytical three-dimensional solutions for the transient response of functionally graded material rectangular plates. J Eng Mech 141(9):04015027

    Article  Google Scholar 

  16. He Y, An C, Su J (2020) Bending of orthotropic rectangular thin plates with two opposite edges clamped. Proc Inst Mech Eng Part C J Mech Eng Sci 234(6):1220–1230

    Article  Google Scholar 

  17. Cotta RM (1993) Integral transforms in computational heat and fluid flow. CRC Press, Boca Raton

    MATH  Google Scholar 

  18. Cotta RM, Mikhailov MD (1997) Heat conduction—lumped analysis, integral transforms, symbolic computation. Wiley, Chichester

    Google Scholar 

  19. Fu GM, An C, Su J (2018) Integral transform solution of natural convection in a cylinder cavity with uniform internal heat generation. Int J Numer Methods Heat Fluid Flow 28(7):1556

    Article  Google Scholar 

  20. Lisboa KM, Su J, Cotta RM (2018) Single domain integral transform analysis of natural convection in cavities partially filled with heat generating porous medium. Numer Heat Transf Part A Appl 74:1–19

    Article  Google Scholar 

  21. Gbadeyan JA, Oni ST (1995) Dynamic behavior of beams and rectangular-plates under moving loads. J Sound Vib 182(5):677

    Article  Google Scholar 

  22. Matt CFT (2009) On the application of generalized integral transform technique to wind-induced vibrations on overhead conductors. Int J Numer Methods Eng 78(8):901

    Article  MathSciNet  Google Scholar 

  23. Oni ST, Omolofe B (2010) Flexural motions under accelerating loads of structurally prestressed beams with general boundary conditions. Latin Am J Solids Struct 7(3):285

    Article  Google Scholar 

  24. Gu JJ, An C, Levi C, Su J (2012) Prediction of vortex-induced vibration of long flexible cylinders modeled by a coupled nonlinear oscillator: integral transform solution. J Hydrodyn 24(6):888

    Article  Google Scholar 

  25. Gu JJ, An C, Duan ML, Levi C, Su J (2013) Integral transform solutions of dynamic response of a clamped–clamped pipe conveying fluid. Nucl Eng Des 254:237

    Article  Google Scholar 

  26. Matt CFT (2013) Combined classical and generalized integral transform approaches for the analysis of the dynamic behavior of a damaged structure. Appl Math Model 37(18–19):8431

    Article  MathSciNet  Google Scholar 

  27. Matt CFT (2013) Simulation of the transverse vibrations of a cantilever beam with an eccentric tip mass in the axial direction using integral transforms. Appl Math Model 37(22):9338

    Article  MathSciNet  Google Scholar 

  28. An C, Su J (2014) Dynamic response of axially moving timoshenko beams: integral transform solution. Appl Math Mech Engl Ed 35(11):1421

    Article  MathSciNet  Google Scholar 

  29. An C, Su J (2014) Dynamic analysis of axially moving orthotropic plates: integral transform solution. Appl Math Comput 228:489

    MathSciNet  MATH  Google Scholar 

  30. An C, Su J (2015) Dynamic behavior of pipes conveying gas–liquid two-phase flow. Nucl Eng Des 292:204

    Article  Google Scholar 

  31. An C, Gu JJ, Su J (2016) Exact solution of bending problem of clamped orthotropic rectangular thin plates. J Braz Soc Mech Sci Eng 38(2):601

    Article  Google Scholar 

  32. Fu G, Peng Y, Sun B, An C, Su J (2019) An exact GITT solution for static bending of clamped parallelogram plate resting on an elastic foundation. Eng Comput 36(6):2034

    Article  Google Scholar 

  33. Zhang J, Zhou C, Ullah S, Zhong Y, Li R (2019) Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates. Appl Math Lett 92:8

    Article  MathSciNet  Google Scholar 

  34. Ullah S, Zhong Y, Zhang JH (2019) Analytical buckling solutions of rectangular thin plates by straightforward generalized integral transform method. Int J Mech Sci 152:535

    Article  Google Scholar 

  35. Gartner JR, Olgac N (1982) Improved numerical computation of uniform beam characteristic values and characteristic functions. J Sound Vib 84(4):481

    Article  Google Scholar 

  36. Gonçalves PJP, Brennan MJ, Elliott SJ (2007) Numerical evaluation of high-order modes of vibration in uniform Euler–Bernoulli beams. J Sound Vib 301(3–5):1035

    Article  Google Scholar 

  37. Gonçalves PJP, Peplow A, Brennan MJ (2018) Exact expressions for numerical evaluation of high order modes of vibration in uniform Euler–Bernoulli beams. Appl Acoust 141:371

    Article  Google Scholar 

  38. Khasawneh FA, Segalman D (2019) Exact and numerically stable expressions for Euler–Bernoulli and Timoshenko beam modes. Appl Acoust 151:215

    Article  Google Scholar 

  39. Wolfram S (2003) The mathematica book, 5th edn. Wolfram Media/Cambridge University Press, Champaign

    MATH  Google Scholar 

  40. Blevins R (2001) Formulas for natural frequency and mode shape. Krieger Publishing Company, Florida

    Google Scholar 

  41. ABAQUS (2009) User’s and theory manuals version 6.9-1. Hibbit, Karlsson and Sorensen, Inc., Pawtucket

Download references

Acknowledgements

The authors acknowledge the support of the the National Key Research and Development Plan (Grant no. 2016YFC0303704), and the 111 Project (B18054) of China and CAPES, CNPq and FAPERJ of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangye He.

Additional information

Technical Editor: José Roberto de França Arruda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

(a) CC (clamped edges):

The eigenfunctions \(X_i(x)\) for a pair of clamped edges in the ‘x’ direction are given by solving problem (11) analytically [35,36,37]:

$$\begin{aligned} X_i(x)&= (-1)^{i}\cos (\mu _ix)-\sin (\mu _ix) \cot \left( \frac{\mu _i}{2}\right) ^{(-1)^i} \\&\quad -\frac{(-1)^i e^{-\mu _ix}}{1-(-1)^i e^{-\mu _i}}+\frac{e^{-\mu _i(1-x)}}{1-(-1)^i e^{-\mu _i}}. \end{aligned}$$
(32)

The transcendental equations for the eigenvalues \(\mu _i\) are given by

$$\begin{aligned} (-1)^i \tan \left( \frac{\mu _i}{2}\right) =\frac{1-e^{-\mu _i}}{1+e^{-\mu _i}} \quad \text{ and } \quad i=1,2,3,\ldots \end{aligned}$$
(33)

(b) SF (simply supported and free edges):

The eigenfunctions \(Y_{1j}(y)\) for a pair of simply supported and free edges in the ‘y’ direction are given by solving problem (12 and 13) analytically [35,36,37]:

$$\begin{aligned} Y_{11}(y)&= \root \of {3} y \quad \text{ and } \\ Y_{1j}(y)&= \root \of {2}\left( \sin (\phi _{1j} y)-\frac{e^{-\phi _{1j}}\sin (\phi _{1j})}{1-e^{-2\phi _{1j}}}e^{-\phi _{1j} y} \right. \\&\quad \left. +\frac{e^{-\phi _{1j}(1-y)}\sin (\phi _{1j})}{1-e^{-2\phi _{1j}}}\right) . \end{aligned}$$
(34)

The transcendental equations for the eigenvalues \(\phi _{1j}\) are given by

$$\begin{aligned}&\phi _{11}=0, \\&\tan (\phi _{1j})=\frac{1-e^{-2\phi _{1j}}}{1+e^{-2\phi _{1j}}} \quad \text{ and } \quad j=2,3,4,\ldots \end{aligned}$$
(35)

(c) CF (clamped and free edges):

The eigenfunctions \(Y_{2j}(y)\) for a pair of clamped and free edges in the ‘y’ direction are given by solving problem (12 and 14) analytically [35,36,37]:

$$\begin{aligned} Y_{2j}(y)&= \cos (\phi _{2j} y)-\frac{1+(-1)^{j} e^{-\phi _{2j}}}{1-(-1)^{j} e^{-\phi _{2j}}}\sin (\phi _{2j} y) \\&\quad - \frac{1}{1-(-1)^{j} e^{-\phi _{2j}}}e^{-\phi _{2j} y}+ \frac{(-1)^{j}}{1-(-1)^{j} e^{-\phi _{2j}}}e^{-\phi _{2j}(1-y)}. \end{aligned}$$
(36)

The transcendental equations for the eigenvalues \(\phi _{2j}\) are given by

$$\begin{aligned} \cos (\phi _{2j})= \frac{-2 e^{-\phi _{2j}}}{1+e^{-2\phi _{2j}}} \quad \text{ and } \quad j=1,2,3,\ldots \end{aligned}$$
(37)

(d) FF (free and free edges):

The eigenfunctions \(Y_{3j}(y)\) for a pair of two free edges in the ‘y’ direction are given by solving problems (12 and 15) given by [35,36,37]

$$\begin{aligned} Y_{31}(y)&= 1, \quad Y_{32}(y)=\root \of {3}(1-2y) \quad \text{ and } \\ Y_{3j}(y)&= \cos (\phi _{3j} y)-\frac{1+(-1)^{j} e^{-\phi _{3j}}}{1-(-1)^{j} e^{-\phi _{3j}}}\sin (\phi _{3j} y) \\&\quad + \frac{1}{1-(-1)^{j} e^{-\phi _{3j}}}e^{-\phi _{3j} y}- \frac{(-1)^{j}}{1-(-1)^{j} e^{-\phi _{3j}}}e^{-\phi _{3j}(1-y)}. \end{aligned}$$
(38)

The transcendental equations for the eigenvalues \(\phi _{3j}\) are given by

$$\begin{aligned}&\phi _{31}=\phi _{32}=0, \\&(-1)^j \tan \left( \frac{\phi _{3j}}{2}\right) =\frac{1-e^{-\phi _{3j}}}{1+e^{-\phi _{3j}}} \quad \text{ and } \quad j=3,4,5,\ldots \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., An, C. & Su, J. Generalized integral transform solution for free vibration of orthotropic rectangular plates with free edges. J Braz. Soc. Mech. Sci. Eng. 42, 183 (2020). https://doi.org/10.1007/s40430-020-2271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-2271-0

Keywords

Navigation