Skip to main content
Log in

Dynamic thermal buckling and postbuckling of clamped–clamped imperfect functionally graded annular plates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamic thermal buckling and postbuckling of imperfect functionally graded material (FGM) annular plates are investigated based on the nonlinear plate theory. The transient temperature fields of the FGM annular plates under dynamic thermal loadings are obtained by Laplace transform in combination of power series method according to the theory of Fourier heat conduction. The nonlinear dynamic equations of large axisymmetric deformations are numerically solved by series expansions and Runge–Kutta method. The critical bucking and dynamic postbuckling responses are predicted by the maximum deflections of the FGM annular plates with positive or negative initial geometric imperfections. The effects of the loads, the material gradient and the initial geometric imperfections on the dynamic responses and the buckling critical temperatures of the FGM annular plates are analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Phung-Van, P., Tran, L.V., Ferreira, A.J.M., et al.: Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dyn. 87(2), 879–894 (2017)

    Article  Google Scholar 

  2. Burlayenko, V.N., Altenbach, H., Sadowski, T., et al.: Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Appl. Math. Model. 45, 422–438 (2017)

    Article  MathSciNet  Google Scholar 

  3. Dai, H.L., Rao, Y.N.: Nonlinear dynamic behavior of a long temperature-dependent FGM hollow cylinder subjected to thermal shocking. Sci. Eng. Compos. Mater. 21(2), 267–280 (2014)

    Article  Google Scholar 

  4. Shen, H.S.: Nonlinear thermal bending of FGM cylindrical panels resting on elastic foundations under heat conduction. Compos. Struct. 113, 216–224 (2014)

    Article  Google Scholar 

  5. Zhang, J.H., Li, G.Z., Li, S.R.: Analysis of transient displacements for a ceramic-metal functionally graded cylindrical shell under dynamic thermal loading. Ceram. Int. 41(9), 12378–12385 (2015)

    Article  Google Scholar 

  6. Huang, H., Han, Q.: Nonlinear dynamic buckling of functionally graded cylindrical shells subjected to time-dependent axial load. Compos. Struct. 92(2), 593–598 (2010)

    Article  Google Scholar 

  7. Bich, D.H., Dung, D.V., Nam, V.H., Phuong, N.T.: Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression. Int. J. Mech. Sci. 74, 190–200 (2013)

    Article  Google Scholar 

  8. Gao, K., Gao, W., Wu, D., et al.: Nonlinear dynamic buckling of the imperfect orthotropic E-FGM circular cylindrical shells subjected to the longitudinal constant velocity. Int. J. Mech. Sci. 138–139, 199–209 (2018)

    Article  Google Scholar 

  9. Zhang, J.H., Li, S.R.: Dynamic buckling of FGM truncated conical shells subjected to non-uniform normal impact load. Compos. Struct. 92(12), 2979–2983 (2010)

    Article  Google Scholar 

  10. Bai, R.X., Lei, Z.K., Xiao, W., et al.: Numerical and experimental study of dynamic buckling behavior of a J-stiffened composite panel under in-plane shear. Compos. Struct. 166, 96–103 (2017)

    Article  Google Scholar 

  11. Darabi, M., Ganesan, R.: Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads. Nonlinear Dyn. 91(1), 187–215 (2018)

    Article  Google Scholar 

  12. Shukla, K.K., Nath, Y.: Buckling of laminated composite rectangular plates under transient thermal loading. J. Appl. Mech. Trans. ASME 69(5), 684–692 (2002)

    Article  Google Scholar 

  13. Wu, C.P., Chiu, S.J.: Thermally induced dynamic instability of laminated composite conical shells. Int. J. Solids Struct. 39(11), 3001–3021 (2002)

    Article  Google Scholar 

  14. Markus, S., Greenberg, J.B., Stavsky, Y.: Coupled thermoelastic theory for dynamic stability of composite plates. J. Therm. Stress. 18(3), 335–357 (1995)

    Article  Google Scholar 

  15. Huang, C.G., Duan, Z.P.: Studies on the dynamic buckling of circular plate irradiated by laser beam. Appl. Math. Mech. 23(7), 748–754 (2002)

    Article  Google Scholar 

  16. Shariyat, M.: Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells under combined axial compression and external pressure. Int. J. Solids Struct. 45, 2598–2612 (2008)

    Article  Google Scholar 

  17. Shariyat, M.: Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions. Compos. Struct. 88(2), 240–252 (2009)

    Article  Google Scholar 

  18. Mirzavand, B., Eslami, M.R., Shakeri, M.: Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. J. Therm. Stress. 33(7), 646–660 (2010)

    Article  Google Scholar 

  19. Mirzavand, B., Eslami, M.R., Reddy, J.N.: Dynamic thermal postbuckling analysis of shear deformable piezoelectric FGM cylindrical shells. J. Therm. Stress. 36(3), 189–206 (2013)

    Article  Google Scholar 

  20. Mehrian, S.M.N., Naei, M.H.: Two-dimensional analysis of functionally graded partial annular disk under radial thermal shock using hybrid Fourier–Laplace transform. Appl. Mech. Mater. 436, 92–99 (2013)

    Article  Google Scholar 

  21. Zhang, J.H., Li, G.Z., Li, S.R., et al.: DQM based thermal stresses analysis of a FG cylindrical shell under thermal shock. J. Therm. Stress. 38(9), 959–982 (2015)

    Article  Google Scholar 

  22. Li, S.R., Zhang, J.H., Zhao, Y.G.: Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection. Thin Walled Struct. 45(5), 528–536 (2007)

    Article  Google Scholar 

  23. Kiani, Y., Eslami, M.R.: An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos. Part B Eng. 45(1), 101–110 (2013)

    Article  Google Scholar 

  24. Li, S.R., Cheng, C.J.: Thermal-buckling of thin annular plates under multiple loads. Appl. Math. Mech. 12(3), 301–308 (1991)

    Article  Google Scholar 

  25. Li, S.R., Fan, L.L.: Dynamic responses of functionally graded material beams under thermal shock. J. Vib. Eng. 22(4), 371–378 (2009). (in Chinese)

    Google Scholar 

  26. Kar, A., Kanoria, M.: Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect. Eur. J. Mech. A Solids 28(4), 757–767 (2009)

    Article  Google Scholar 

  27. Samsam Shariat, B.A., Eslami, M.R.: Thermal buckling of imperfect functionally graded plates. Int. J. Solids Struct. 43(14–15), 4082–4096 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11662008, 11262010) and abroad exchange funding for young backbone teachers of Lanzhou University of Technology. The authors gratefully acknowledge all of the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Appendix

Appendix

$$\begin{aligned} F_1= & {} \frac{\partial ^{3}W}{\partial x^{3}}+\frac{1}{x}\frac{\partial ^{2}W}{\partial x^{2}}-\frac{1}{x^{2}}\frac{\partial W}{\partial x},\\ F_2= & {} -\left( {\frac{\partial ^{2}W}{\partial x^{2}}-\frac{\partial ^{2}W_0 }{\partial x^{2}}+\frac{1-\nu }{2x}\frac{\partial W}{\partial x}} \right) \frac{\partial W}{\partial x}\\&-\,\left( {\frac{\partial ^{2}W}{\partial x^{2}}+\frac{1-\nu }{x}\frac{\partial W}{\partial x}} \right) \frac{\partial W_0 }{\partial x},\\ F_3= & {} \frac{\partial ^{2}W}{\partial x^{2}}+\frac{\partial ^{2}W_0 }{\partial x^{2}}+\frac{1}{x}\left( {\frac{\partial W}{\partial x}+\frac{\partial W_0 }{\partial x}} \right) , \\ F_4= & {} \frac{1}{x}\frac{\partial }{\partial x}x\frac{\partial }{\partial x}\frac{1}{x}\frac{\partial }{\partial x}\left( {xU} \right) ,\\ F_5= & {} \frac{1-3\nu }{x}\frac{\partial W}{\partial x}\frac{\partial ^{2}W}{\partial x^{2}}+\frac{1-2\nu }{x}\frac{\partial ^{2}W}{\partial x^{2}}\frac{\partial W_0 }{\partial x}\\&+\,\left[ \frac{2\left( {1-\nu } \right) }{x}\frac{\partial W}{\partial x} +\frac{\partial ^{2}W}{\partial x^{2}} \right] \frac{\partial ^{2}W_0 }{\partial x^{2}}+\frac{\partial W}{\partial x}\frac{\partial ^{3}W_0 }{\partial x^{3}},\\ F_6= & {} \frac{1}{x}\frac{\partial }{\partial x}\left[ {x\left( {\frac{\partial U}{\partial x}+\frac{\nu }{x}U} \right) \frac{\partial W}{\partial x}} \right] \\&+\,\left[ {\frac{\partial U}{\partial x}+\frac{\nu }{x}U} \right] \frac{\partial ^{2}W_0 }{\partial x^{2}}+\left( {\frac{\partial ^{2}U}{\partial x^{2}}+\frac{1+\nu }{x}\frac{\partial U}{\partial x}} \right) \frac{\partial W_0 }{\partial x},\\ F_7= & {} \frac{1}{x}\frac{\partial }{\partial x}\left[ {\frac{x}{2}\left( {\frac{\partial W}{\partial x}} \right) ^{2}+\frac{\partial W}{\partial x}} \right] \\&+\,\left( {2\frac{\partial W_0 }{\partial x}+\frac{3}{2}\frac{\partial W}{\partial x}} \right) \frac{\partial W}{\partial x}\frac{\partial ^{2}W_0 }{\partial x^{2}} \\&+\,\left[ \left( {3\frac{\partial W}{\partial x}+\frac{\partial W_0 }{\partial x}} \right) \frac{\partial ^{2}W}{\partial x^{2}}\right. \\&\left. +\left( {\frac{3}{2x}\frac{\partial W}{\partial x}+\frac{1}{x}\frac{\partial W_0 }{\partial x}} \right) \frac{\partial W}{\partial x} \right] \frac{\partial W_0 }{\partial x} \\ \eta _1= & {} \left( {\nu -15} \right) \frac{32A_8 ^{2}x^{13}}{\lambda ^{2}}+\left( {\nu -13} \right) \frac{48A_6 A_8 x^{11}}{\lambda ^{2}}\\&+\,\left( {\nu -11} \right) \left( {18A_6 ^{2}+32A_4 A_8 } \right) \frac{x^{9}}{\lambda ^{2}}\\&+\,\left( {\nu -9} \right) 16A_4 A_6 \frac{x^{7}}{\lambda ^{2}} \\&+\,\left( {\nu -9} \right) 24A_2 A_8 \frac{x^{7}}{\lambda ^{2}}+\left( {\nu -7} \right) \\&\times \,\left( {12A_2 A_6 +8A_4 ^{2}} \right) \frac{x^{5}}{\lambda ^{2}}+\left( {\nu -5} \right) \frac{8A_2 A_4 x^{3}}{\lambda ^{2}}\\&+\,\left( {\nu -3} \right) \frac{2A_2 ^{2}x}{\lambda ^{2}} \end{aligned}$$
$$\begin{aligned} \eta _2= & {} \left( {\nu -15} \right) \frac{64\delta _0 A_8 ^{2}x^{13}}{\lambda ^{2}}+\left( {\nu -13} \right) \frac{96\delta _0 A_8 A_6 x^{11}}{\lambda ^{2}}\\&+\,\left( {\nu -11} \right) \left( {36\delta _0 A_6 ^{2}+64\delta _0 A_4 A_8 } \right) \frac{x^{9}}{\lambda ^{2}} \\&+\,\left( {\nu -9} \right) \left( {48\delta _0 A_4 A_6 +32\delta _0 A_2 A_8 } \right) \frac{x^{7}}{\lambda ^{2}}\\&+\,\left[ \left( {24\delta _0 A_2 A_6 +16\delta _0 A_4 ^{2}} \right) \left( {\nu -7} \right) +\,\frac{384D_2 A_8 }{D_1 } \right] \frac{x^{5}}{\lambda ^{2}}\\&+\left[ \frac{144D_2 A_6 }{D_1 }+16\delta _0 A_2 A_4 \times \,\left( {\nu -5} \right) -12\delta _0 A_2 ^{2} \right] \frac{x^{3}}{\lambda ^{2}}\\&+\,\left( {\delta _0 A_2 ^{2}\nu +\frac{8D_2 A_4 }{D_1 }} \right) \frac{4x}{\lambda ^{2}} \\ \lambda _1= & {} \frac{5632D_1 D_4 ^{4}A_8 ^{3}x^{20}}{\lambda ^{3}}+\frac{11520D_1 D_4 ^{4}A_6 A_8 ^{2}x^{18}}{\lambda ^{3}}\\&\quad +\,\left( 7776A_6 ^{2}A_8 {+}6912A_4 A_8 ^{2}\right. \\&\quad \left. +\,3072A_2 A_8 ^{2} \right) \frac{D_1 D_4 ^{4}x^{16}}{\lambda ^{3}}\\&\quad +\,\left( {9216A_4 A_6 A_8 {+}1728A_6 ^{3}} \right) \frac{D_1 D_4 ^{4}x^{14}}{\lambda ^{3}}\\&\quad +\,\left( 4032A_2 A_6 A_8 {+}2688A_4 ^{2}A_8 \right. \\&\quad \left. +\,3024A_4 A_6 ^{2} \right) \frac{D_1 D_4 ^{4}x^{12}}{\lambda ^{3}}\\&\quad +\,\left( 2304A_2 A_4 A_8 {+}1296A_2 A_{6}^{2}\right. \\&\quad \left. +\,1728A_{4}^{2} A_6 \right) \frac{D_1 D_{4}^{4} x^{10}}{\lambda ^{3}}\\&\quad +\,\left( {320A_{4}^{3} {+}1440A_2 A_4 A_6 {+}480A_{2}^{2} A_8 } \right) \frac{320A_{4}^{3} x^{8}}{\lambda ^{3}} \\&\quad +\,\left( {288A_2 ^{2}A_6 {+}384A_2 A_4 ^{2}} \right) \frac{D_1 D_4 ^{4}x^{6}}{\lambda ^{3}}\\&\quad +\,\frac{144D_1 D_4 ^{4}A_2 ^{2}A_4 x^{4}}{\lambda ^{3}}+\frac{16D_1 D_4 ^{4}A_2 ^{3}x^{2}}{\lambda ^{3}}\\ \end{aligned}$$
$$\begin{aligned} \lambda _2= & {} \frac{16896D_1 D_4 ^{4}\delta _0 A_8 ^{3}x^{20}}{\lambda ^{3}}+\frac{34560A_6 D_1 D_4 ^{4}\delta _0 A_8 ^{2}x^{18}}{\lambda ^{3}}\\&\quad +\,\left( {20736A_4 A_8 ^{2}{+}23328A_6 ^{2}A_8 } \right) \frac{D_1 D_4 ^{4}\delta _0 x^{16}}{\lambda ^{3}}\\&\quad +\,\frac{9216A_2 A_8 ^{2}D_1 D_4 ^{4}\delta _0 x^{14}}{\lambda ^{3}}\\&\quad +\,\left( {27648A_2 A_6 A_8 {+}5184A_6 ^{3}} \right) \\&\quad \times \,\frac{D_1 D_4 ^{4}\delta _0 x^{14}}{\lambda ^{3}}+\left( {1-3\nu } \right) \frac{448D_2 D_4 ^{4}A_8 ^{2}x^{12}}{\lambda ^{3}} \\&\quad +\,\left( {12096A_2 A_6 A_8 +8064A_4 ^{2}A_8 +9072A_4 A_6 ^{2}} \right) \\&\quad \times \,\frac{D_1 D_4 ^{4}\delta _0 x^{12}}{\lambda ^{3}}+3888A_2 A_6 ^{2}\frac{D_1 D_4 ^{4}\delta _0 x^{10}}{\lambda ^{3}} \\&\quad +\,\left( {6912A_2 A_4 A_8 +5184A_{4}^{2} A_6 } \right) \frac{D_1 D_4 ^{4}\delta _0 x^{10}}{\lambda ^{3}}\\&\quad +\,\left( {1-3\nu } \right) \frac{576D_2 D_{4}^{4} A_6 A_8 x^{10}}{\lambda ^{2}}\\&\quad +\,\left( {1-3\nu } \right) \frac{180D_2 D_{4}^{4} A_{6}^{2} x^{8}}{\lambda ^{2}} \\&\quad +\,\left( {1-3\nu } \right) \frac{320D_2 D_4 ^{4}A_4 A_8 x^{8}}{\lambda ^{2}}\\&\quad +\,\left( 960A_4 ^{3}+1440A_2 ^{2}A_8 \right. \\&\quad \left. +\,4320A_2 A_4 A_6 \right) \frac{D_1 D_4 ^{4}\delta _0 x^{8}}{\lambda ^{3}} \\&\quad +\,\left( {1-3\nu } \right) \frac{128D_2 D_4 ^{4}A_2 A_8 x^{6}}{\lambda ^{2}}+\left( {1-3\nu } \right) \\&\quad \times \,\frac{192D_2 D_4 ^{4}A_4 A_6 x^{6}}{\lambda ^{2}}+\left( 864A_2 ^{2}A_6\right. \\&\quad \left. +\,1152A_2 A_4 ^{2} \right) \frac{D_1 D_4 ^{4}\delta _0 x^{6}}{\lambda ^{3}}\\&\quad +\,\left( {1-3\nu } \right) \frac{48D_2 D_4 ^{4}A_4 ^{2}x^{4}}{\lambda ^{2}}+\left( {1-3\nu } \right) \\&\quad \times \,\frac{72D_2 D_4 ^{4}A_2 A_6 x^{4}}{\lambda ^{2}}+\frac{432D_1 D_4 ^{4}\delta _0 A_2 ^{2}A_4 x^{4}}{\lambda ^{3}}\\&\quad +\,\left( {1-3\nu } \right) \frac{32D_2 D_4 ^{4}A_2 A_4 x^{2}}{\lambda ^{2}}\\&\quad +\,\frac{48D_1 D_4 ^{4}\delta _0 A_2 ^{3}x^{2}}{\lambda ^{3}}+\left( {1-3\nu } \right) \frac{4D_2 D_4 ^{4}A_2 ^{2}}{\lambda ^{2}} \\ \end{aligned}$$
$$\begin{aligned} \lambda _3= & {} \frac{11264D_1 D_4 ^{4}\delta _0 ^{2}A_8 ^{3}x^{20}}{\lambda ^{3}}+\frac{23040D_1 D_4 ^{4}\delta _0 ^{2}A_6 A_8 ^{2}x^{18}}{\lambda ^{3}}\\&\quad +\,\left( {13824A_8 ^{2}{+}15552A_6 ^{2}A_8 } \right) \frac{D_1 D_4 ^{4}\delta _0 ^{2}x^{16}}{\lambda ^{3}} \\&\quad +\,\left( {6144A_2 A_8 ^{2}+18432A_4 A_6 A_8 +3456A_6 ^{3}} \right) \\&\quad \times \,\frac{D_1 D_4 ^{4}\delta _0 ^{2}x^{14}}{\lambda ^{3}}+\frac{\left( {4-\nu } \right) 1792D_2 D_4 ^{4}\delta _0 A_8 ^{2}x^{12}}{\lambda ^{2}} \\&\quad +\,\left( {6048A_4 A_6 ^{2}+5376A_4 ^{2}A_8 +8064A_2 A_6 A_8 } \right) \\&\quad \times \,\frac{D_1 D_4 ^{4}\delta _0 ^{2}x^{12}}{\lambda ^{3}}+\frac{\left( {7-2\nu } \right) 2304D_2 D_4 ^{4}\delta _0 A_6 A_8 x^{10}}{\lambda ^{2}} \\&\quad +\,\frac{\left( {3-\nu } \right) 720D_2 D_4 ^{4}\delta _0 A_6 ^{2}x^{8}}{\lambda ^{2}}+\left( 2592A_2 A_6 ^{2}\right. \\&\quad \left. +\,3456A_4 ^{2}A_6 +4608A_4 A_6 A_8 \right) \frac{D_1 D_4 ^{4}\delta _0 ^{2}x^{10}}{\lambda ^{3}} \\&\quad +\,\left( {640A_4 ^{3}+960A_2 ^{2}A_8 +2880A_2 A_4 A_6 } \right) \\&\quad \times \,\frac{D_1 D_4 ^{4}\delta _0 ^{2}x^{8}}{\lambda ^{3}}+\frac{\left( {3-\nu } \right) 1280D_2 D_4 ^{4}\delta _0 A_4 A_8 x^{8}}{\lambda ^{2}} \\&\quad +\,\frac{8D_1 D_4 ^{4}A_8 x^{7}}{\lambda }\frac{\partial ^{2}U\left( x \right) }{\partial x^{2}}+\left( 768A_2 A_4 ^{2}\right. \\&\quad \left. +\,576A_2 ^{2}A_6 \right) \frac{D_1 D_4 ^{4}\delta _0 ^{2}x^{6}}{\lambda ^{3}}\\&\quad +\,\left( {5-2\nu } \right) \frac{256D_2 D_4 ^{4}\delta _0 A_2 A_8 x^{6}}{\lambda ^{2}} \\&\quad +\,\left( {8+\nu } \right) \frac{8\nu D_1 D_4 ^{4}A_8 x^{6}}{\lambda }\frac{\partial U\left( x \right) }{\partial x}-\frac{64N_T D_4 ^{4}A_8 x^{6}}{\lambda }\\&\quad +\,\left( {5-2\nu } \right) \frac{384D_2 D_4 ^{4}\delta _0 A_4 A_6 x^{6}}{\lambda ^{2}}\\&\quad +\,\left( {56A_8 \nu U\left( x \right) +6A_6 \frac{\partial ^{2}U\left( x \right) }{\partial x^{2}}} \right) \frac{D_1 D_4 ^{4}x^{5}}{\lambda }\\&\quad +\,\left( {2-\nu } \right) \frac{192D_2 D_4 ^{4}\delta _0 A_4 ^{2}\nu x^{4}}{\lambda ^{2}}-\frac{36N_T D_4 ^{4}A_6 x^{4}}{\lambda } \\&\quad +\,\left( {2-\nu } \right) \frac{288D_2 D_4 ^{4}\delta _0 A_2 A_6 \nu x^{4}}{\lambda ^{2}}+\left( {6+\nu } \right) \\&\quad \times \,\frac{6D_1 D_4 ^{4}A_6 \nu x^{4}}{\lambda }\frac{\partial U\left( x \right) }{\partial x}+\frac{288D_1 D_4 ^{4}\delta _0 ^{2}A_2 ^{2}A_4 x^{4}}{\lambda ^{3}} \\&\quad +\,\left( {4A_4 \frac{\partial ^{2}U\left( x \right) }{\partial x^{2}}+30A_6 \nu U\left( x \right) } \right) \frac{D_1 D_4 ^{4}x^{3}}{\lambda }\\&\quad +\,\frac{32D_1 D_4 ^{4}\delta _0 ^{2}A_2 ^{3}x^{2}}{\lambda ^{3}}+\left( {4+\nu } \right) \frac{4D_1 D_4 ^{4}A_4 \nu x^{2}}{\lambda }\frac{\partial U\left( x \right) }{\partial x} \\ \end{aligned}$$
$$\begin{aligned}&\quad +\,\left( {3-2\nu } \right) \frac{128D_2 D_4 ^{4}\delta _0 A_2 A_4 \nu x^{2}}{\lambda ^{2}}-\frac{16N_T D_4 ^{4}A_4 x^{2}}{\lambda }\\&\quad +\,\left( {A_2 \frac{\partial ^{2}U\left( x \right) }{\partial x^{2}}+6A_4 \nu U\left( x \right) } \right) \frac{2D_1 D_4 ^{4}x}{\lambda } \\&\quad +\,\left( {2+\nu } \right) \frac{2D_1 D_4 ^{4}A_2 \nu }{\lambda }\frac{\partial U\left( x \right) }{\partial x}\\&\quad -\,\frac{4N_T D_4 ^{4}A_2 }{\lambda }+\frac{2D_1 D_4 ^{4}A_2 \nu U\left( x \right) }{x\lambda } \\ \lambda _4= & {} -\frac{D_0 A_8 x^{8}}{\lambda }-\frac{D_0 A_6 x^{6}}{\lambda }-\frac{D_0 A_4 x^{4}}{\lambda }\\&-\,\frac{D_0 A_2 x^{2}}{\lambda }-\frac{D_0 }{\lambda }\\ \lambda _5= & {} \frac{8D_1 D_4 ^{4}\delta _0 A_8 x^{7}}{\lambda }\frac{\partial ^{2}U}{\partial x^{2}}+\left( {8\frac{\partial U}{\partial x}-\frac{8N_T }{D_1 }+\nu \frac{\partial U}{\partial x}} \right) \\&\times \frac{8D_1 D_4 ^{4}\delta _0 A_8 x^{6}}{\lambda }{+}\left( {56A_8 \nu U+6A_6 \frac{\partial ^{2}U}{\partial x^{2}}} \right) \frac{D_1 D_4 ^{4}\delta _0 x^{5}}{\lambda } \\&+\,\left( {6\frac{\partial U}{\partial x}+\nu \frac{\partial U}{\partial x}-\frac{6N_T }{D_1 }} \right) \frac{6D_1 D_4 ^{4}\delta _0 A_6 x^{4}}{\lambda }\\&+\,\left( {30A_6 \nu U+4A_4 \frac{\partial ^{2}U}{\partial x^{2}}} \right) \frac{D_1 D_4 ^{4}\delta _0 x^{3}}{\lambda }\\&-\,\frac{16N_T D_4 ^{4}\delta _0 A_4 x^{2}}{\lambda }\\&+\,\left( {4+\nu } \right) \frac{4D_1 D_4 ^{4}\delta _0 A_4 x^{2}}{\lambda }\frac{\partial U}{\partial x}+\left( {6\nu A_4 U+A_2 \frac{\partial ^{2}U}{\partial x^{2}}} \right) \\&\times \,\frac{2D_1 D_4 ^{4}\delta _0 x}{\lambda }+\frac{D_2 D_4 ^{4}U}{x^{3}}-\frac{D_2 D_4 ^{4}}{x^{2}}\frac{\partial U}{\partial x} \\&+\,\frac{2D_2 D_4 ^{4}}{x}\frac{\partial ^{2}U}{\partial x^{2}}+\frac{2D_1 D_4 ^{4}\delta _0 A_2 \nu U}{\lambda x}+\left( {\nu +2} \right) \\&\times \,\frac{2D_1 D_4 ^{4}\delta _0 A_2 }{\lambda }\frac{\partial U}{\partial x}+D_2 D_4 ^{4}\frac{\partial U}{\partial x}-\frac{4N_T D_4 ^{4}\delta _0 A_2 }{\lambda } \\ {\eta }'_1= & {} \left( {\nu -15} \right) \frac{A_8 ^{2}x^{15}}{7\lambda ^{2}}+\left( {\nu -13} \right) \frac{2A_6 A_8 x^{13}}{7\lambda ^{2}}+\left( {\nu -11} \right) \\&\times \left( {9A_6 ^{2}+16A_4 A_8 } \right) \frac{x^{11}}{60\lambda ^{2}}+\left( {\nu -9} \right) 3A_4 A_6 \frac{x^{9}}{10\lambda ^{2}} \\&+\,\left( {\nu -9} \right) 2A_2 A_8 \frac{x^{9}}{10\lambda ^{2}}+\left( {\nu -7} \right) \left( {3A_2 A_6 +2A_4 ^{2}} \right) \\&\times \,\frac{x^{7}}{12\lambda ^{2}}+\left( {\nu -5} \right) \frac{A_2 A_4 x^{5}}{3\lambda ^{2}}+\left( {\nu -3} \right) \frac{A_2 ^{2}x^{3}}{4\lambda ^{2}} \\ \end{aligned}$$
$$\begin{aligned} {\eta }'_2= & {} \left( {\nu -15} \right) \frac{2\delta _0 A_8 ^{2}x^{15}}{7\lambda ^{2}}+\left( {\nu -13} \right) \frac{4\delta _0 A_8 A_6 x^{13}}{7\lambda ^{2}}\\&+\,\left( {\nu -11} \right) \left( {9\delta _0 A_6 ^{2}+16\delta _0 A_4 A_8 } \right) \frac{x^{11}}{30\lambda ^{2}} \\&+\,\left( {\nu -9} \right) \left( {12\delta _0 A_4 A_6 +4\delta _0 A_2 A_8 } \right) \frac{x^{9}}{10\lambda ^{2}}\\&\quad +\,\left[ \left( {3\delta _0 A_2 A_6 +2\delta _0 A_4 ^{2}} \right) \left( {\nu -7} \right) \right. \\&\quad \left. +\,\frac{48D_2 A_8 }{D_1 } \right] \frac{x^{7}}{6\lambda ^{2}} +\left[ \frac{36D_2 A_6 }{D_1 }\right. \\&\quad \left. +\,4\delta _0 A_2 A_4 \left( {\nu -5} \right) -3\delta _0 A_2 ^{2} \right] \\&\quad \times \,\frac{x^{5}}{6\lambda ^{2}}+\left( {\delta _0 A_2 ^{2}\nu +\frac{8D_2 A_4 }{D_1 }} \right) \frac{x^{3}}{2\lambda ^{2}} \\ \eta _1 ^{\prime \prime }= & {} -\left( {\nu -15} \right) \frac{A_8 ^{2}\left( {x_1 ^{16}-1} \right) }{7\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&-\,\left( {\nu -13} \right) \frac{2A_6 A_8 \left( {x_1 ^{14}-1} \right) }{7\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&-\,\left( {\nu -11} \right) \left( {9A_6 ^{2}+16A_4 A_8 } \right) \frac{\left( {x_1 ^{12}-1} \right) }{60\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\&-\,\left( {\nu -9} \right) \left( {3A_4 A_6 +2A_2 A_8 } \right) \frac{\left( {x_1 ^{10}-1} \right) }{10\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&-\,\left( {\nu -7} \right) \left( {3A_2 A_6 +2A_4 ^{2}} \right) \frac{\left( {x_1 ^{8}-1} \right) }{12\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\&-\,\left( {\nu -5} \right) \frac{A_2 A_4 \left( {x_1 ^{6}-1} \right) }{3\lambda ^{2}\left( {x_1 ^{2}-1} \right) }-\left( {\nu -3} \right) \frac{A_2 ^{2}\left( {x_1 ^{4}-1} \right) }{4\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\ \eta _2 ^{\prime \prime }= & {} -\left( {\nu -15} \right) \frac{2\delta _0 A_8 ^{2}\left( {x_1 ^{16}-1} \right) }{7\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&-\,\left( {\nu -13} \right) \frac{4\delta _0 A_8 A_6 \left( {x_1 ^{14}-1} \right) }{7\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&-\,\left( {\nu -11} \right) \left( {9A_6 ^{2}+16A_4 A_8 } \right) \frac{\delta _0 \left( {x_1 ^{12}-1} \right) }{30\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\&-\,\left( {\nu -9} \right) \left( {3A_4 A_6 +A_2 A_8 } \right) \frac{4\delta _0 \left( {x_1 ^{10}-1} \right) }{10\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&-\,\left[ \left( {3\delta _0 A_2 A_6 +2\delta _0 A_4 ^{2}} \right) \left( {\nu -7} \right) \right. \\&\left. +\,\frac{48D_2 A_8 }{D_1 } \right] \frac{\left( {x_1 ^{8}-1} \right) }{6\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\&-\,\left[ {\frac{36D_2 A_6 }{D_1 }+4\delta _0 A_2 A_4 \left( {\nu -5} \right) -3\delta _0 A_2 ^{2}} \right] \\ \end{aligned}$$
$$\begin{aligned}&\times \,\frac{\left( {x_1 ^{6}-1} \right) }{6\lambda ^{2}\left( {x_1 ^{2}-1} \right) }-\left( {\delta _0 A_2 ^{2}\nu +\frac{8D_2 A_4 }{D_1 }} \right) \frac{\left( {x_1 ^{4}-1} \right) }{2\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\ \eta _3 ^{\prime \prime }= & {} \left( {\nu -15} \right) \frac{A_8 ^{2}\left( {x_1 ^{16}-x_1 ^{2}} \right) }{7\lambda ^{2}\left( {x_1 ^{2}-1} \right) }+\left( {\nu -13} \right) \frac{2A_6 A_8 \left( {x_1 ^{14}-x_1 ^{2}} \right) }{7\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&+\,\left( {\nu -11} \right) \left( {9A_6 ^{2}+16A_4 A_8 } \right) \frac{\left( {x_1 ^{12}-x_1 ^{2}} \right) }{60\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&+\,\left( {\nu -9} \right) \left( {3A_4 A_6 +2A_2 A_8 } \right) \frac{\left( {x_1 ^{10}-x_1 ^{2}} \right) }{10\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&+\,\left( {\nu -7} \right) \left( {3A_2 A_6 +2A_4 ^{2}} \right) \frac{\left( {x_1 ^{8}-x_1 ^{2}} \right) }{12\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\&+\,\left( {\nu -5} \right) \frac{A_2 A_4 \left( {x_1 ^{6}-x_1 ^{2}} \right) }{3\lambda ^{2}\left( {x_1 ^{2}-1} \right) }+\left( {\nu -3} \right) \frac{A_2 ^{2}\left( {x_1 ^{4}-x_1 ^{2}} \right) }{4\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\ \eta _4 ^{\prime \prime }= & {} \left( {\nu -15} \right) \frac{2\delta _0 A_8 ^{2}\left( {x_1 ^{16}-x_1 ^{2}} \right) }{7\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&+\,\left( {\nu -13} \right) \frac{4\delta _0 A_8 A_6 \left( {x_1 ^{14}-x_1 ^{2}} \right) }{7\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&+\,\left( {\nu -11} \right) 9\delta _0 A_6 ^{2}\frac{\left( {x_1 ^{12}-x_1 ^{2}} \right) }{30\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\&+\,\left( {\nu -11} \right) 16\delta _0 A_4 A_8 \frac{\left( {x_1 ^{12}-x_1 ^{2}} \right) }{30\lambda ^{2}\left( {x_1 ^{2}-1} \right) }+\left( {\nu -9} \right) \\&\times \left( {12\delta _0 A_4 A_6 +4\delta _0 A_2 A_8 } \right) \frac{\left( {x_1 ^{10}-x_1 ^{2}} \right) }{10\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\&+\,\left[ {\delta _0 \left( {3A_2 A_6 +2A_4 ^{2}} \right) \left( {\nu -7} \right) +\frac{48D_2 A_8 }{D_1 }} \right] \\&\times \frac{\left( {x_1 ^{8}-x_1 ^{2}} \right) }{6\lambda ^{2}\left( {x_1 ^{2}-1} \right) }+4\delta _0 A_2 A_4 \left( {\nu -5} \right) \frac{\left( {x_1 ^{6}-x_1 ^{2}} \right) }{6\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\&+\,\left( {\frac{36D_2 A_6 }{D_1 }-3\delta _0 A_2 ^{2}} \right) \frac{\left( {x_1 ^{6}-x_1 ^{2}} \right) }{6\lambda ^{2}\left( {x_1 ^{2}-1} \right) }\\&+\,\left( {\delta _0 A_2 ^{2}\nu +\frac{8D_2 A_4 }{D_1 }} \right) \frac{\left( {x_1 ^{4}-x_1 ^{2}} \right) }{2\lambda ^{2}\left( {x_1 ^{2}-1} \right) } \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Pan, S. & Chen, L. Dynamic thermal buckling and postbuckling of clamped–clamped imperfect functionally graded annular plates. Nonlinear Dyn 95, 565–577 (2019). https://doi.org/10.1007/s11071-018-4583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4583-5

Keywords

Navigation