Skip to main content
Log in

Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We consider a bi-dimensional sheet consisting of two orthogonal families of inextensible fibres. Using the representation due to Rivlin and Pipkin for admissible placements, i.e. placements preserving the lengths of the inextensible fibres, we numerically simulate a standard bias extension test on the sheet, solving a non-linear constrained optimization problem. Several first and second gradient deformation energy models are considered, depending on the shear angle between the fibres and on its gradient, and the results obtained are compared. The proposed numerical simulations will be helpful in designing a systematic experimental campaign aimed at characterizing the internal energy for physical realizations of the ideal pantographic structure presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Nikopour H, Selvadurai APS (2014) Concentrated loading of a fibre-reinforced composite plate: experimental and computational modeling of boundary fixity. Composites B Eng 60:297–305

    Article  Google Scholar 

  2. Selvadurai APS, Nikopour H (2012) Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: Experiments, theory and computations. Compos Struct 94(6):1973–1981

    Article  Google Scholar 

  3. Hamila N, Boisse P (2013) Locking in simulation of composite reinforcement deformations. Analysis and treatment. Composites A Appl Sci Manuf 53:109–117

    Article  Google Scholar 

  4. Boisse P (2011) Composite reinforcements for optimum performance. Elsevier, Amsterdam

    Book  Google Scholar 

  5. Nikopour H, Selvadurai A (2013) Torsion of a layered composite strip. Compos Struct 95:1–4 cited By 0

    Article  Google Scholar 

  6. dell’Isola F, d’Agostino MV, Madeo A, Boisse P, Steigmann D (2016) Minimization of shear energy in two dimensional continua with two orthogonal families of inextensible fibers: the case of standard bias extension test. J Elast 122(2):131–155

  7. dell’Isola F, Steigmann DJ (2015) A two-dimensional gradient-elasticity theory for woven fabrics. J Elast 118(1):113–125

    Article  MathSciNet  MATH  Google Scholar 

  8. Scerrato D, Giorgio I, Rizzi NL (2016) Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z Angew Math Phys 67:1–19

    Article  MathSciNet  MATH  Google Scholar 

  9. Scerrato D, Zhurba Eremeeva IA, Lekszycki T, Rizzi NL (2016) On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Z Angew Math Mech. doi:10.1002/zamm.201600066

    Google Scholar 

  10. dell’Isola F, Giorgio I, Andreaus U (2015) Elastic pantographic 2D lattices: a numerical analysis on the static response and wave propagation. Proc Estonian Acad Sc 64:219–225

    Article  Google Scholar 

  11. dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL (2016) Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium. Proc Royal Soc Lond A: Math Phys Eng Sci 472(2185):1–23

  12. dell’Isola F, Della Corte A, Greco L, Luongo A (2015) Plane Bias Extension Test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange Multipliers and a Perturbation Solution. Submitted to: Int J Solids Struct

  13. Laurent C, Durville D, Vaquette C, Rahouadj R, Ganghoffer J (2013) Computer-aided tissue engineering: application to the case of anterior cruciate ligament repair. Biomech Cells Tissues 9:1–44

    Article  Google Scholar 

  14. Del Vescovo D, Giorgio I (2014) Dynamic problems for metamaterials: review of existing models and ideas for further research. Int J Eng Sci 80:153–172

    Article  MathSciNet  Google Scholar 

  15. dell’Isola F, Placidi L (2012) Variational principles are a powerful tool also for formulating field theories. In: dell’Isola F, Gavrilyuk S (eds) Variational models and methods in solid and fluid mechanics. Springer Science & Business Media, New York

  16. Rivlin RS (1955) Plane strain of a net formed by inextensible cords. J Ration Mech Anal 4(6):951–974

    MathSciNet  MATH  Google Scholar 

  17. Rivlin R (1997) Plane strain of a net formed by inextensible cords. In: Collected Papers of RS Rivlin. Springer, New York, pp 511–534

  18. Pipkin AC (1980) Some developments in the theory of inextensible networks. Quart Appl Math 38(3):343–355

    Article  MathSciNet  MATH  Google Scholar 

  19. Pipkin AC (1981) Plane traction problems for inextensible networks. Quart J Mech Appl Math 34(4):415–429

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang W-B, Pipkin AC (1986) Inextensible networks with bending stiffness. Quart J Mech Appl Math 39(3):343–359

    Article  MATH  Google Scholar 

  21. Wang W-B, Pipkin AC (1987) Plane deformations of nets with bending stiffness. Acta Mech 65(1–4):263–279

    Article  MATH  Google Scholar 

  22. Dos Reis F, Ganghoffer J (2012) Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput Mater Sci 51:314–321

    Article  Google Scholar 

  23. Goda I, Assidi M, Belouettar S, Ganghoffer J (2012) A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J Mech Behav Biomed Mater 16:87–108

    Article  Google Scholar 

  24. Alibert JJ, Della Corte A (2015) Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z Angew Math Phys 66:2855–2870

    Article  MathSciNet  MATH  Google Scholar 

  25. Forest S (1998) Mechanics of generalized continua: construction by homogenizaton. J Phys IV 8(PR4):Pr4–39

    Google Scholar 

  26. Dos Reis F, Ganghoffer J (2012) Construction of micropolar models from lattice homogenization. Comput Struct 112—-113:354–363

    Article  Google Scholar 

  27. Assidi M, Ben Boubaker B, Ganghoffer J (2011) Equivalent properties of monolayer fabric from mesoscopic modelling strategies. Int J Solid Struct 48(20):2920–2930

    Article  Google Scholar 

  28. Goda I, Assidi M, Ganghoffer J (2013) Construction of micropolar models from lattice homogenization. J Mech Phys Solids 61(12):2537–2565

    Article  ADS  Google Scholar 

  29. Dos Reis F, Ganghoffer J (2014) Homogenized elastoplastic response of repetitive 2D lattice truss materials. Comput Mater Sci 84:145–155

    Article  Google Scholar 

  30. Chaouachi F, Rahali Y, Ganghoffer J (2014) A micromechanical model of woven structures accounting for yarn-yarn contact based on Hertz theory and energy minimization. Comput Mater Sci 66:368–380

    Google Scholar 

  31. Misra A, Poorsolhjouy P (2016) Based micromorphic model predicts frequency band gaps. Continuum Mech Thermodyn 28(1):215–234

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Misra A, Poorsolhjouy P (2015) Identification of higher-order elastic constants for grain assemblies upon granular micromechanics. Math Mech Complex Syst 3(3):285–308

    Article  MathSciNet  MATH  Google Scholar 

  33. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  34. Toupin RA (1964) Theories of elasticity with couple-stress. Arch Ration Mech Anal 17(2):85–112

    Article  MathSciNet  MATH  Google Scholar 

  35. Eringen AC (2012) Microcontinuum field theories: I. Foundations and solids. Springer, New York

    MATH  Google Scholar 

  36. Eringen AC (1965) Theory of micropolar fluids. Technical report, DTIC Document

  37. Neff P, Forest S (2007) A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J Elast 87(2–3):239–276

    Article  MathSciNet  MATH  Google Scholar 

  38. Neff P, Ghiba I-D, Madeo A, Placidi L, Rosi G (2014) A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech Thermodyn 26(5):639–681

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Altenbach H, Eremeyev VA, Lebedev LP, Rendón LA (2010) Acceleration waves and ellipticity in thermoelastic micropolar media. Arch Appl Mech 80(3):217–227

    Article  MATH  Google Scholar 

  40. Altenbach J, Altenbach H, Eremeyev VA (2010) On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch Appl Mech 80(1):73–92

    Article  MATH  Google Scholar 

  41. Eremeyev V (2005) Nonlinear micropolar shells: theory and applications. In: Shell structures: theory and applications (vol 2): proceedings of the 9th SSTA Conference, Jurata, Poland, pp.11–18

  42. Boutin C (1996) Microstructural effects in elastic composites. Int J Solids Struct 33(7):1023–1051

    Article  MATH  Google Scholar 

  43. Berezovski A, Giorgio I, Della Corte A (2015) Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math Mech Solids 21(1):37–51

    Article  MathSciNet  MATH  Google Scholar 

  44. Giorgio I, Andreaus U, Madeo A (2014) The influence of different loads on the remodeling process of a bone and bio-resorbable material mixture with voids. Continuum Mech Thermodyn 28(1):21–40

    ADS  MATH  Google Scholar 

  45. Madeo A, Neff P, Ghiba I-D, Placidi L, Rosi G (2015) Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum Mech Thermodyn 28(1):1–20

    MathSciNet  MATH  Google Scholar 

  46. Federico S (2010) On the linear elasticity of porous materials. Int J Mech Sci 52(2):175–182

    Article  Google Scholar 

  47. Misra A, Yang Y (2010) Micromechanical model for cohesive materials based upon pseudo-granular structure. Int J Solids Struct 47:2970–2981

    Article  MATH  Google Scholar 

  48. Misra A, Singh V (2013) Micromechanical model for viscoelastic-materials undergoing damage. Continuum Mech Thermodyn 25:1–16

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Andreaus U, Giorgio I, Madeo A (2014) Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Z Angew Math Phys 66(1):209–237

    Article  MathSciNet  MATH  Google Scholar 

  50. Scerrato D, Giorgio I, Madeo A, Limam A, Darve F (2014) A simple non-linear model for internal friction in modified concrete. Int J Eng Sci 80:136–152

    Article  MathSciNet  Google Scholar 

  51. Scerrato D, Giorgio I, Della Corte A, Madeo A, Limam A (2015) A micro-structural model for dissipation phenomena in the concrete. Int J Numer Anal Methods Geomec 39(18):2037–2052

    Article  Google Scholar 

  52. Germain P (1973) The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J Appl Math 25(3):556–575

    Article  MATH  Google Scholar 

  53. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438

    Article  Google Scholar 

  54. Alibert J-J, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 8(1):51–73

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang Y, Ching WY, Misra A (2011) Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J Nanomech Micromech 1(2):60–71

    Article  Google Scholar 

  56. Yang Y, Misra A (2010) Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput Model Eng Sci 64(1):1–36

    MathSciNet  MATH  Google Scholar 

  57. dell’Isola F, Andreaus U, Placidi L (2014) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928

    Article  MathSciNet  MATH  Google Scholar 

  58. Rinaldi A, Placidi L (2014) A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM-J Appl Math Mech 94(10):862–877

    Article  MathSciNet  MATH  Google Scholar 

  59. Placidi L (2014) A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mech Thermodyn 27(4–5):623–638

    ADS  MathSciNet  MATH  Google Scholar 

  60. Placidi L (2014) A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mech Thermodyn 28(1):119–137

    ADS  MathSciNet  MATH  Google Scholar 

  61. Placidi L, Rosi G, Giorgio I, Madeo A (2014) Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math Mech Solids 19(5):555–578

    Article  MathSciNet  MATH  Google Scholar 

  62. Andreaus U, Chiaia B, Placidi L (2013) Soft-impact dynamics of deformable bodies. Continuum Mech Thermodyn 25(2–4):375–398

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Selvadurai A (2009) On the surface displacement of an isotropic elastic halfspace containing an inextensible membrane reinforcement. Math Mech Solids 14(1–2):123–134 cited By 3

    Article  MathSciNet  MATH  Google Scholar 

  64. Federico S, Grillo A, Imatani S (2014) The linear elasticity tensor of incompressible materials. Math Mech Solids 20(6):643–662

    Article  MathSciNet  MATH  Google Scholar 

  65. Luongo A (2010) A unified perturbation approach to static/dynamic coupled instabilities of nonlinear structures. Thin-Wall Struct 48(10):744–751

    Article  Google Scholar 

  66. Placidi L, Andreaus U, Giorgio I (2016) Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J Eng Math. doi:10.1007/s10665-016-9856-8

  67. Cuomo M, Contrafatto L, Greco L (2014) A varational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 80:173–188

    Article  Google Scholar 

  68. Turco E, Caracciolo P (2000) Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput Methods Appl Mech Eng 190(5–7):691–706

    Article  ADS  MATH  Google Scholar 

  69. Cazzani A, Malagù M, Turco E, Stochino F (2015) Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math Mech Solids 21(2):182–209

    Article  MathSciNet  MATH  Google Scholar 

  70. Cazzani A, Malagù M, Turco E (2014) Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech Thermodyn 28:139–156

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Cazzani A, Malagù M, Turco E (2016) Isogeometric analysis of plane-curved beams. Math Mech Solids 21(5):562–577

    Article  MathSciNet  MATH  Google Scholar 

  72. Ciancio D, Carol I, Cuomo M (2006) On inter-element forces in the FEM-displacement formulation, and implication for stress recovery. Int J Numer Meth Eng 66(3):502–528

    Article  MATH  Google Scholar 

  73. Ciancio D, Carol I, Cuomo M (2007) Crack opening at corner nodes in FE analysis with cracking along mesh lines. Eng Fract Mech 74(13):1963–1982

    Article  Google Scholar 

  74. dell’Isola F, Lekszycki T, Pawlikowski M, Grygoruk R, Greco L (2015) Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z Angew Math Phys 66(6):3473–3498

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the International Research Center on the Mathematics and Mechanics of Complex Systems (M&MoCS). The interesting discussions with the participants of the workshop Computational Mechanics of Generalized Continua and Applications to Materials with Microstructure [Catania, 29–31 October 2015, Scuola Superiore di Catania, and the François Cosserat-Tullio Levi Civita International Laboratory associated to CNRS (LIA Coss&Vita)] were very fruitful and greatly influenced this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Della Corte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dell’Isola, F., Cuomo, M., Greco, L. et al. Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J Eng Math 103, 127–157 (2017). https://doi.org/10.1007/s10665-016-9865-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9865-7

Keywords

Mathematics Subject Classification

Navigation