Skip to main content
Log in

Acceleration waves and ellipticity in thermoelastic micropolar media

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Acceleration waves in nonlinear thermoelastic micropolar media are considered. We establish the kinematic and dynamic compatibility relations for a singular surface of order 2 in the media. An analogy to the Fresnel–Hadamard–Duhem theorem and an expression for the acoustic tensor are derived. The condition for acceleration wave’s propagation is formulated as an algebraic spectral problem. It is shown that the condition coincides with the strong ellipticity of equilibrium equations. As an example, a quadratic form for the specific free energy is considered and the solutions of the corresponding spectral problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer Science Media, New York (2005)

    Google Scholar 

  2. Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G.: Metal Foams: a Design Guid. Butterworth-Heinemann, Boston (2000)

    Google Scholar 

  3. Chen P.J.: Growth of acceleration waves in isotropic elastic materials. J. Acoust. Soc. Am. 43, 982–987 (1968)

    Article  Google Scholar 

  4. Chen P.J.: One dimensional acceleration waves in inhomogeneous elastic non-conductors. Acta Mech. 17, 17–24 (1973)

    Article  MATH  Google Scholar 

  5. Cielecka I., Woźniak M., Woźniak C.: Elastodynamic behaviour of honeycomb cellular media. J. Elast. 60, 1–17 (2000)

    Article  MATH  Google Scholar 

  6. Cosserat E., Cosserat F.: Théorie des corps déformables. Herman et Flis, Paris (1909)

    Google Scholar 

  7. Diebels S.: A micropolar theory of porous media: constitutive modelling. Transp. Porous Media 34, 193–208 (1999)

    Article  Google Scholar 

  8. Diebels S., Steeb H.: Stress and couple stress in foams. Comput. Mater. Sci. 28, 714–722 (2003)

    Article  Google Scholar 

  9. Dietsche A., Steinmann P., Willam K.: Micropolar elastoplasticity and its role in localization. Int. J. Plast. 9, 813–831 (1993)

    Article  MATH  Google Scholar 

  10. Ehlers W., Ramm E., Diebels S., d’Addetta G.D.A.: From particle ensembles to Cosserat continua: Homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eremeyev V.A.: Acceleration waves in micropolar elastic media. Dokl. Phys. 50(4), 204–206 (2005)

    Article  Google Scholar 

  12. Eremeyev V.A.: Nonlinear micropolar shells: theory and applications. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications, pp. 11–18. Taylor and Francis, London (2005)

    Google Scholar 

  13. Eremeyev V.A., Zubov L.M.: On the stability of elastic bodies with couple stresses (in Russ.). Mech. Solids 3, 181–190 (1994)

    Google Scholar 

  14. Eremeyev V.A., Zubov L.M.: On constitutive inequalities in nonlinear theory of elastic shells. ZAMM 87(2), 94–101 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eremeyev V.A., Lebedev L.P., Rendón L.A.: On the propagation of acceleration waves in thermoelastic micropolar media. Revista Colombiana de Matemáticas 41, 397–406 (2007)

    Google Scholar 

  16. Ericksen J.L., Truesdell C.: Exact tbeory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eringen A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999)

    Google Scholar 

  18. Eringen A.C.: Microcontinuum Field Theory. II. Fluent Media. Springer, New York (2001)

    Google Scholar 

  19. Eringen A.C., Maugin G.A.: Electrodynamics of Continua. Springer, New York (1990)

    Google Scholar 

  20. Eringen A.C., Suhubi E.S.: Elastodynamics, vol. 1. Academic Press, New York (1974)

    MATH  Google Scholar 

  21. Erofeev V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)

    Google Scholar 

  22. Fu Y.B., Scott N.H.: Acceleration wave propagation in an inhomogeneous heat conducting elastic rod of slowly varying cross section. J. Therm. Stresses 15, 253–264 (1988)

    MathSciNet  Google Scholar 

  23. Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  24. Kafadar C.B., Eringen A.C.: Micropolar media–I. The classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)

    Article  Google Scholar 

  25. Kafadar C.B., Eringen A.C.: Polar field theories. In: Eringen, A.C. (eds) Continuum Physics, vol. IV, pp. 1–75. Academic Press, New York (1976)

    Google Scholar 

  26. Knowles J.K., Sternberg E.: On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 10, 255–293 (1980)

    Article  MathSciNet  Google Scholar 

  27. Koiter W.T.: Couple–stresses in the theory of elasticity. Pt I–II. Proc. Koninkl Neterland Akad Wetensh B 67, 17–44 (1964)

    MATH  Google Scholar 

  28. Lakes R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  29. Lakes R.S.: Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua. Trans. ASME J. Eng. Mater. Technol. 113, 148–155 (1991)

    Article  Google Scholar 

  30. Lurie A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  31. Lurie A.I.: Theory of Elasticity. Foundations of Engineering Mechanics. Springer, Berlin (2005)

    Google Scholar 

  32. Maugin G.A.: Acceleration waves in simple and linear viscoelastic micropolar materials. Int. J. Eng. Sci. 12, 143–157 (1974)

    Article  MATH  Google Scholar 

  33. Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Oxford (1988)

    MATH  Google Scholar 

  34. Maugin G.A.: On the structure of the theory of polar elasticity. Philos. Trans. R. Soc. Lond. A 356, 1367–1395 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Maugin G.A.: Nonlinear Waves on Elastic Crystals. Oxford University Press, Oxford (1999)

    Google Scholar 

  36. Naghdi P.: The theory of plates and shells. In: Flügge, S. (eds) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Heidelberg (1972)

    Google Scholar 

  37. Neff P., Forest S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87, 239–276 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nikitin E., Zubov L.M.: Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J. Elast. 51, 1–22 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Noll W.: A new mathematical theory of simple materials. Arch. Rational Mech. Anal. 48, 1–50 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  40. Nowacki W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford (1986)

    MATH  Google Scholar 

  41. Ogden R.W.: Growth and decay of acceleration waves in incompresible elastic solids. Q. J. Mech. Appl. Math. 37, 451–464 (1974)

    Article  Google Scholar 

  42. Pal’mov V.A.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Mech. Math. 28(3), 496–505 (1964)

    Article  MathSciNet  Google Scholar 

  43. Park H.C., Lakes R.S.: Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19, 385–397 (1986)

    Article  Google Scholar 

  44. Pietraszkiewicz W., Eremeyev V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)

    Article  MathSciNet  Google Scholar 

  45. Rosakis P.: Ellipticity and deformation with discontinuous gradients in finite elastostatics. Arch. Ration. Mech. Anal. 109, 1–37 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rubin M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  47. Scott N.H.: Acceleration waves in constrained elastic materials. Arch. Ration. Mech. Anal. 58, 57–75 (1975)

    Article  MATH  Google Scholar 

  48. Toupin R.A.: Theories of elasticity with couple–stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  49. Truesdell C.: A First Course in Rational Continuum Mechanics. Academic Press, New York (1977)

    MATH  Google Scholar 

  50. Truesdell C.: Rational Thermodynamics, 2nd edn. Springer, New York (1984)

    Google Scholar 

  51. Truesdell C., Noll W.: The nonlinear field theories of mechanics. In: Flügge, S. (eds) Handbuch der Physik, vol. III/3, pp. 1–602. Springer, Berlin (1965)

    Google Scholar 

  52. Vassilev, V., Djondjorov, P.: Acceleration waves in the von Kármán plate theory. In: Integral Methods in Science and Engineering, CRC Research Notes in Mathematics 418, vol. 83, pp. 131–136. Chapman & Hall, Boca Raton (2000)

  53. Zee L., Sternberg E.: Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids. Arch. Ration. Mech. Anal. 83, 53–90 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    Article  MathSciNet  Google Scholar 

  55. Zubov L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach.

Additional information

The work was supported by the DAAD program “Forschungsaufenthalte für Hochschullehrer und Wissenschaftler” in 2008, by the Russian Foundation of Basic Research under grants 07-01-00525, and by Universidad Nacional de Colombia, project of investigation No. DIB 8003061.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, H., Eremeyev, V.A., Lebedev, L.P. et al. Acceleration waves and ellipticity in thermoelastic micropolar media. Arch Appl Mech 80, 217–227 (2010). https://doi.org/10.1007/s00419-009-0314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0314-1

Keywords

Navigation