Skip to main content

Advertisement

Log in

Food wastes as a potential hotspot of antibiotic resistance: synergistic expression of multidrug resistance and ESBL genes confer antibiotic resistance to microbial communities

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study investigated antibiotic resistance (ABR) and extended-spectrum ß-lactamases (ESBL) patterns in bacterial isolates collected from the dairy, hotel, meat, and canteen food waste samples. A total of 144 bacterial strains were collected and screened for resistance against 9 standard antibiotics belonging to three generations and ESBL production. The ABR profile of the bacterial isolates was observed against all four major antibiotic groups (aminoglycosides, β-lactams, quinolone, and others), where resistance against cefotaxime (> 70%) and methicillin (> 50%) was high. Though the ABR pattern of strains from dairy waste (> 50%) was high against first-generation antibiotics, the strains from meat waste (> 50%) showed considerable resistance against second- and third-generation antibiotics. ESBL-producing isolates were screened (> 60%, n = 144) through primary identification tests (combined disk test and double disk synergy tests) and further confirmed through Hexa G-minus 23 and 24 and MIC E-stripe following CLSI guidelines. Genes conferring ESBL resistance blaCTX-M, blaSHV, blaOXA, blaTEM, blaKPC genes and multidrug resistance (MDR) mexF gene were detected in the selected isolates with ABR and ESBL traits. Isolates with multidrug ABR and ESBL phenotype were further genotypically identified through 16 s rRNA gene sequencing. The synergy of ABR was detected through the co-expression of ESBL and MDR in isolates with a high occurrence of ABR and ESBL. The results demonstrate the significance of food waste as a natural reservoir of ABR and ESBL-producing pathogens, highlighting the importance of resistance monitoring and its interventions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Acolatse, J.E.E., Portal, E.A.R., Boostrom, I., et al. (2022). Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. Antimicrobial Resistance & Infection Control, 11, 49. https://doi.org/10.1186/s13756-022-01090-2

  • Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., et al. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48(D1), D517–D525. https://doi.org/10.1093/nar/gkz935

    Article  CAS  Google Scholar 

  • Aslam, B., Khurshid, M., Arshad, M. I., Muzammil, S., Rasool, M., Yasmeen, N., et al. (2021). Antibiotic resistance: One health one world outlook. Frontiers in cellular and infection microbiology, 11, 771510. https://doi.org/10.3389/fcimb.2021.771510

    Article  CAS  Google Scholar 

  • Azab, K. S. M., Abdel-Rahman, M. A., El-Sheikh, H. H., Azab, E., Gobouri, A. A., & Farag, M. M. S. (2021). Distribution of extended-spectrum β-lactamase (ESBL)-encoding genes among multidrug-resistant gram-negative pathogens collected from three different countries. Antibiotics (Basel, Switzerland), 10(3). https://doi.org/10.3390/antibiotics10030247

  • Bergšpica, I., Kaprou, G., Alexa, E. A., Prieto, M., & Alvarez-Ordóñez, A. (2020). Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli in Pigs and Pork Meat in the European Union. Antibiotics, 9, 678. https://doi.org/10.3390/antibiotics9100678

    Article  CAS  Google Scholar 

  • Bonnet, R., Sampaio, J. L., Chanal, C., Sirot, D., De Champs, C., Viallard, J. L., Labia, R., & Sirot, J. (2000). A novel class A extended-spectrum beta-lactamase (BES-1) in Serratia marcescens isolated in Brazil. Antimicrob Agents Chemother, 44(11), 3061–8. https://doi.org/10.1128/AAC.44.11.3061-3068.2000

    Article  CAS  Google Scholar 

  • Bhuwal, A. K., Singh, G., Aggarwal, N. K., Goyal, V., & Yadav, A. (2014). Poly-β-hydroxybutyrate production and management of cardboard industry effluent by new Bacillus sp. NA10. Bioresources and Bioprocessing, 1(1), 9. https://doi.org/10.1186/s40643-014-0009-5

  • Castanheira, M., Simner, P. J., & Bradford, P. A. (2021). Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance, 3(3), dlab092. https://doi.org/10.1093/jacamr/dlab092

    Article  Google Scholar 

  • Caudell, M. A., Mair, C., Subbiah, M., Matthews, L., Quinlan, R. J., Quinlan, M. B., et al. (2018). Identification of risk factors associated with carriage of resistant <em>Escherichia coli</em> in three culturally diverse ethnic groups in Tanzania: A biological and socioeconomic analysis. The Lancet Planetary Health, 2(11), e489–e497. https://doi.org/10.1016/S2542-5196(18)30225-0

    Article  Google Scholar 

  • Chowdhury, S., Ghosh, S., Aleem, M. A., Parveen, S., Islam, M. A., Rashid, M. M., et al. (2021). Antibiotic usage and resistance in food animal production: What have we learned from Bangladesh? Antibiotics (basel, Switzerland), 10(9), 1032. https://doi.org/10.3390/antibiotics10091032

    Article  CAS  Google Scholar 

  • CLSI. (2022). Performance standards for antimicrobial susceptibility testing, 32nd Edition. https://clsi.org/standards/products/microbiology/documents/m100/. Accessed 28 June 2022

  • Costa, M. M., Cardo, M., Soares, P., Cara d’Anjo, M., & Leite, A. (2022). Multi-drug and &beta;-lactam resistance in Escherichia coli and Food-borne pathogens from animals and food in Portugal, 2014&ndash;2019. Antibiotics. https://doi.org/10.3390/antibiotics11010090

    Article  Google Scholar 

  • Díaz-Gavidia, C., Barría, C., Rivas, L., García, P., Alvarez, F. P., González-Rocha, G., et al. (2021). Isolation of ciprofloxacin and ceftazidime-resistant enterobacterales from vegetables and river water is strongly associated with the season and the sample type. Frontiers in microbiology, 12, 604567. https://doi.org/10.3389/fmicb.2021.604567

    Article  Google Scholar 

  • Esemu, S. N., Aka, T. K., Kfusi, A. J., Ndip, R. N., & Ndip, L. M. (2022). Multidrug-resistant bacteria and enterobacteriaceae count in abattoir wastes and its receiving waters in Limbe Municipality, Cameroon: Public health implications. BioMed research international. Laboratory for Emerging Infectious Diseases, University of Buea, PO Box 63, Buea, Cameroon. https://doi.org/10.1155/2022/9977371

  • Foudraine, D. E., Strepis, N., Stingl, C., ten Kate, M. T., Verbon, A., Klaassen, C. H. W., et al. (2021). Exploring antimicrobial resistance to beta-lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics. Scientific Reports, 11(1), 12472. https://doi.org/10.1038/s41598-021-91905-w

    Article  CAS  Google Scholar 

  • Gokul, M. S., Dahms, H.-U., Muthukumar, K., Kaviarasan, T., Henciya, S., Vignesh, S., et al. (2019). Chapter 13 - Multimarker pollution studies along the east coast of southern India. In M. Ramkumar, R. A. James, D. Menier, & K. B. T.-C. Z. M. Kumaraswamy (Eds.), (pp. 331–346). Elsevier. https://doi.org/10.1016/B978-0-12-814350-6.00013-6

  • Gwenzi, W., Chaukura, N., Muisa-Zikali, N., Teta, C., Musvuugwa, T., Rzymski, P., & Abia, A. L. K. (2021). Insects, rodents, and pets as reservoirs, vectors, and sentinels of antimicrobial resistance. Antibiotics, 10(1). https://doi.org/10.3390/antibiotics10010068

  • He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., & Alvarez, P. J. J. (2020). Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water, 3(1), 4. https://doi.org/10.1038/s41545-020-0051-0

    Article  Google Scholar 

  • Jenifer, P., Vijay, R., Rawson, A., Baskaran, N., & Vignesh, S. (2022). Food waste as a reservoir of antibiotic resistant strains: A study on spread of ESBL linked with ABR strains from seafood waste. The Pharma Innovation Journal, 11(8S), 1322–1327. https://www.thepharmajournal.com/special-issue?year=2022&vol=11&issue=8S&ArticleId=14964. Accessed 9 Sept 2022

  • Jia, J., Zhu, Z., Xue, X., Li, X., & Wang, Z. (2022). Selective pressure governs the composition, antibiotic, and heavy metal resistance profiles of Aeromonas spp. isolated from Ba River in Northwest China. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-022-20678-0

    Article  Google Scholar 

  • Kiehlbauch, J. A., Hannett, G. E., Salfinger, M., Archinal, W., Monserrat, C., & Carlyn, C. (2000). Use of the National Committee for Clinical Laboratory Standards guidelines for disk diffusion susceptibility testing in New York state laboratories. Journal of Clinical Microbiology, 38(9), 3341–3348. https://doi.org/10.1128/JCM.38.9.3341-3348.2000

    Article  CAS  Google Scholar 

  • Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms, 7(6), 180. https://doi.org/10.3390/microorganisms7060180

    Article  CAS  Google Scholar 

  • Li, Y., Li, W., Pan, Y., Liu, C., Liang, S., & Zeng, Z. (2022). The emergence and molecular study of methicillin-resistant Staphylococcus aureus ST239, ST59, ST9, and ST630 in food animals, Chongqing, China. Veterinary Microbiology, 265, 109329. https://doi.org/10.1016/j.vetmic.2021.109329

    Article  CAS  Google Scholar 

  • Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., et al. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324. https://doi.org/10.1016/j.envint.2018.03.044

    Article  CAS  Google Scholar 

  • Martak, D., Guther, J., Verschuuren, T.D., Valot B, Conzelmann, N., Bunk, S., et al. (2022). Populations of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae are different in human-polluted environment and food items: a multicentre European study. Clinical Microbiology and Infection, 28(3):447.e7-447. https://doi.org/10.1016/j.cmi.2021.07.022

  • Mir, R., Salari, S., Najimi, M., & Rashki, A. (2022). Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Veterinary Medicine and Science, 8(1), 229–236. https://doi.org/10.1002/vms3.647

    Article  CAS  Google Scholar 

  • Mummaleti, G., Sarma, C., Kalakandan, S., Sivanandham, V., Rawson, A., & Anandharaj, A. (2021). Optimization and extraction of edible microbial polysaccharide from fresh coconut inflorescence sap: An alternative substrate. Lwt, 138, 110619. https://doi.org/10.1016/j.lwt.2020.110619

    Article  CAS  Google Scholar 

  • Murugan, M. S., Sinha, D. K., Vinodh Kumar, O. R., Yadav, A. K., Pruthvishree, B. S., Vadhana, P., et al. (2019). Epidemiology of carbapenem-resistant Escherichia coli and first report of blaVIM carbapenemases gene in calves from India. Epidemiology and Infection, 147, e159. https://doi.org/10.1017/S0950268819000463

    Article  Google Scholar 

  • Nagvenkar, G. S., & Ramaiah, N. (2009). Abundance of sewage-pollution indicator and human pathogenic bacteria in a tropical estuarine complex. Environmental Monitoring and Assessment, 155(1–4), 245–256. https://doi.org/10.1007/s10661-008-0432-1

    Article  CAS  Google Scholar 

  • Priyanka Yashwant, C., Krishnmoorthy, S., Loganathan, M. A. R., Anandharaj, A., Baskaran, N., & Vignesh, S. (2021). Biotransformation of food waste to starter culture biomass: An investigation of antibiotic resistance-free lactic acid bacteria from dairy and household food waste. The Pharma Innovation Journal, 10(10S), 601–607. https://www.thepharmajournal.com/special-issue?year=2021&vol=10&issue=10S&ArticleId=8203. Accessed 11 Aug 2022

  • Qiao, M., Ying, G.-G., Singer, A. C., & Zhu, Y.-G. (2018). Review of antibiotic resistance in China and its environment. Environment International, 110, 160–172. https://doi.org/10.1016/j.envint.2017.10.016

    Article  CAS  Google Scholar 

  • Rajivgandhi, G., Maruthupandy, M., Ramachandran, G., Priyanga, M., & Manoharan, N. (2018). Detection of ESBL genes from ciprofloxacin resistant Gram negative bacteria isolated from urinary tract infections (UTIs). Frontiers in Laboratory Medicine, 2(1), 5–13. https://doi.org/10.1016/j.flm.2018.01.001

    Article  Google Scholar 

  • Ramachandran, G., Rajivgandhi, G. N., Chackaravarthi, G., Kanisha, C. C., Siddiqi, M. Z., Alharbi, N. S., et al. (2021). Isolation and molecular identification of extended spectrum beta-lactamase producing bacteria from urinary tract infection. Journal of Infection and Public Health, 14(12), 1911–1916. https://doi.org/10.1016/j.jiph.2021.10.016

    Article  Google Scholar 

  • Sanganyado, E., & Gwenzi, W. (2019). Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Science of the Total Environment, 669, 785–797. https://doi.org/10.1016/j.scitotenv.2019.03.162

    Article  CAS  Google Scholar 

  • Sinha, R. (2018). Dairy farm wastewater increases presence of antibiotic resistant genes in soil. DowntoEarth. https://www.downtoearth.org.in/news/health/irrigation-with-farm-wastewater-enhances-presence-of-antibiotic-resistance-genes-in-soil-60451. Accessed 10 Apr 2022

  • Sivakumar, M., Abass, G., Vivekanandhan, R., Singh, D. K., Bhilegaonkar, K., et al. (2021). Extended-spectrum beta-lactamase (ESBL) producing and multidrug-resistant Escherichia coli in street foods: A public health concern. Journal of Food Science and Technology, 58(4), 1247–1261. https://doi.org/10.1007/s13197-020-04634-9

    Article  CAS  Google Scholar 

  • Song, H.-J., Kim, S.-J., Moon, D. C., Mechesso, A. F., Choi, J.-H., Kang, H. Y., et al. (2022). Antimicrobial resistance in Escherichia coli isolates from healthy food animals in South Korea, 2010&ndash;2020. Microorganisms. https://doi.org/10.3390/microorganisms10030524

    Article  Google Scholar 

  • Song, J., Oh, S.-S., Kim, J., Park, S., & Shin, J. (2020). Clinically relevant extended-spectrum β-lactamase–producing escherichia coli isolates from food animals in South Korea. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00604

  • Srinivasan, K., & Buys, E. M. (2019). Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2018.1546670

    Article  Google Scholar 

  • Tomaszewska, M., Bilska, B., Tul-Krzyszczuk, A., & Kołożyn-Krajewska, D. (2021). Estimation of the scale of food waste in hotel food services—A case study. Sustainability, 13(1). https://doi.org/10.3390/su13010421

  • Vignesh, S., Muthukumar, K., & James, R. A. (2012). Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin, 64(4), 790–800. https://doi.org/10.1016/j.marpolbul.2012.01.015

    Article  CAS  Google Scholar 

  • Vignesh, S., Dahms, H.-U., Emmanuel, K. V., Gokul, M. S., Muthukumar, K., Kim, B.-R., & James, R. A. (2014). Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. Environmental Monitoring and Assessment, 186(3), 1875–1887. https://doi.org/10.1007/s10661-013-3501-z

    Article  CAS  Google Scholar 

  • Vignesh, S., Dahms, H. U., Kumarasamy, P., Rajendran, A., Kim, B. R., & James, R. A. (2015). Microbial effects on geochemical parameters in a tropical river basin. Environmental Processes, 2(1), 125–144. https://doi.org/10.1007/s40710-015-0058-6

    Article  Google Scholar 

  • Vignesh, S., Dahms, H. U., Muthukumar, K., Vignesh, G., & James, R. A. (2016). Biomonitoring along the tropical Southern Indian Coast with multiple biomarkers. PLOS One, 11(12), e0154105. https://doi.org/10.1371/journal.pone.0154105

    Article  CAS  Google Scholar 

  • Vignesh, S, Muthukumar, K., Gokul, M. S., & James, R. A. (2013). Microbial pollution indicators in the Cauvery River, Southern India. In M. Ramkumar (Ed.), On a Sustainable Future of the Earth’s Natural Resources (pp. 363–376). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32917-3_20

  • Vijay, R., Srinivasan, K., Arunkumar, A., Baskaran, N., Ashish, R., & Vignesh, S. (2021). Enhanced exopolysaccharide production from food waste as a substrate through fed-batch FMN: An exploratory investigation of fluoride resistant bacteria. The Pharma Innovation, SP-10(10), 594–600.

    Google Scholar 

  • Wang, M., Yao, M., & Zhu, Y. (2022). Antibiotic resistance genes and antibiotic sensitivity in bacterial aerosols and their comparisons with known respiratory pathogens. Journal of Aerosol Science, 161, 105931. https://doi.org/10.1016/j.jaerosci.2021.105931

    Article  CAS  Google Scholar 

  • Yashwant, C. P., Rajendran, V., Krishnamoorthy, S., Nagarathinam, B., Rawson, A., Anandharaj, A., & Sivanandham, V. (2022). Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Science and Biotechnology. https://doi.org/10.1007/s10068-022-01222-9

    Article  Google Scholar 

  • Zalewska, M., Błażejewska, A., Czapko, A., & Popowska, M. (2021). Antibiotics and antibiotic resistance genes in animal manure – Consequences of its application in agriculture. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.610656

Download references

Acknowledgements

The authors express their sincere gratitude to the National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)—Thanjavur, Thanjavur, Tamil Nadu, for providing the facilities and the Department of Science & Technology (DST-SERB-SRG/2021/001005) for funding support to carry out the study.

Funding

Dr. Vignesh Sivanandham has received a research grant from the Department of Science & Technology, Science & Engineering Research Board (DST-SERB-SRG/2021/001005).

Author information

Authors and Affiliations

Authors

Contributions

Jenifer performed all the experiments and generated data; Srinivasan wrote the manuscript and analyzed the data; Baskaran performed the molecular analysis and reviewed the manuscript. Vignesh conceptualized the study, designed the experiment, and supervised and reviewed the research work.

Corresponding author

Correspondence to Vignesh Sivanandham.

Ethics declarations

Ethical approval

Not applicable.

Consent to publish

The authors give consent for the publication of the manuscript, which includes images and tables within the text to be published in the Journal and Article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

As the Corresponding author, I confirm that the manuscript has been read and approved for submission by all the named authors. We declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1663 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periasamy, J., Krishnamoorthy, S., Nagarethinam, B. et al. Food wastes as a potential hotspot of antibiotic resistance: synergistic expression of multidrug resistance and ESBL genes confer antibiotic resistance to microbial communities. Environ Monit Assess 195, 783 (2023). https://doi.org/10.1007/s10661-023-11335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11335-1

Keywords

Navigation