Skip to main content
Log in

Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A total of 176 (water and sediment) samples from 22 stations belonging to four different (urban, semi-urban, rural, and holy places) human habitations of Tamil Nadu beaches were collected and analyzed for physiochemical and microbial parameters during 2008–2009. Bacterial counts were two- to tenfold higher in sediments than in water due to strong bacterial aggregations by dynamic flocculation and rich organic content. The elevated bacterial communities during the monsoon explain rainfalls and several other wastes from inlands. Coliform counts drastically increased at holy and urban places due to pilgrimage and other ritual activities. Higher values of the pollution index (PI) ratio (>1) reveals, human fecal pollutions affect the water quality. The averaged PI ratio shows a substantial higher microbial contamination in holy places than in urban areas and the order of decreasing PI ratios observed were: holy places > urban areas > semi-urban areas > rural areas. Correlation and factor analysis proves microbial communities were not related to physicochemical parameters. Principal component analysis indicates 55.32 % of the total variance resulted from human/animal fecal matters and sewage contaminants whereas 19.95 % were related to organic contents and waste materials from the rivers. More than 80 % of the samples showed a higher fecal coliform and Streptococci by crossing the World Health Organization's permissible limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelzaher, A. M., Wright, M. E., Ortega, C., Solo-Gabriele, H. M., Miller, G., Elmir, S., et al. (2010). Presence of pathogens and indicator microbes at a non-point source subtropical recreational marine beach. Applied Environmental Microbiology, 76, 724–732.

    Article  CAS  Google Scholar 

  • Aitken, M. N. (2003). Impact of agricultural practices and river catchment characteristics on river and bathing water quality. Water Science and Technology, 48, 217–224.

    CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: APHA.

    Google Scholar 

  • Arakel, A. V. (1995). Towards developing sediment quality assessment guidelines for aquatic systems—an Australian perspective. Australian Journal of Earth Science, 42, 335–369.

    Article  Google Scholar 

  • Arvanitidou, M., Kanellou, K., & Vagiona, D. G. (2005). Diversity of Salmonella spp. and fungi in northern Greek rivers & their correlation to fecal pollution indicators. Environmental Research, 99, 278–284.

    Article  CAS  Google Scholar 

  • Ashbolt, N., Grohmann, G., & Kueh, C. (1993a). Significance of specific bacterial pathogens in the assessment of polluted receiving waters of Sydney. Water Science and Technology, 27, 449–452.

    Google Scholar 

  • Ashbolt, N. J., Dorsch, M. R., Cox, P. T., & Banens, B. (1993b). Blooming E. coli, what do they mean? In D. Kay & C. Fricker (Eds.), Coliforms and E. coli, problem or solution? (pp. 78–85). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Badge, U. S., & Rangari, A. K. (1999). Periodicity of coliform bacteria in an aquatic environment. Water Science Technology, 40, 151–157.

    Google Scholar 

  • Badge, U. S., & Varma, A. K. (1982). Distribution and periodicity of total, fecal coliform bacteria in an aquatic ecosystem. International Journal of Applied Bacteriology, 67, 213–217.

    Google Scholar 

  • Badra, B., Mukherjee, S., Chakarborty, R., & Nanda, A. K. (2003). Physiochemical and Bacteriological investigation on the river Torsa of North Bengal. Journal of Environmental Biology, 24, 125–133.

    Google Scholar 

  • Baghel, V. S., Gopal, K., Diwedi, S., & Tripathi, R. D. (2005). Bacterial indicators of fecal contamination of the Gangetic river system right at its source. Ecological Indicators, 5, 49–56.

    Article  Google Scholar 

  • Borst, M., & Selvakumar, A. (2003). Particle-associated microorganisms in stormwater runoff. Water Research, 37, 215–223.

    Article  CAS  Google Scholar 

  • Buckley, R., Clough, E., Warnken, W., & Wild, C. (1998). Coliform bacteria in streambed sediments in a subtropical rainforest conservation reserve. Water Research, 32, 1852–1856.

    Article  CAS  Google Scholar 

  • Burkwall, M. K., Hartman P. A. (1964). Comparison of direct plating media for the isolation and enumeration of enterococci in certain frozen foods. Appl Microbiol, 12:18–23.

    Google Scholar 

  • Byamukama, D., Mach, R. L., Kansiime, F., Manafa, M., & Farnleitner, A. H. (2005). Discrimination efficacy of fecal pollution detection in different aquatic habitats of a high-altitude tropical country, using presumptive coliforms, Escherichia coli, and Clostridium perfringens spores. Applied Environmental Microbiology, 71, 65–71.

    Article  CAS  Google Scholar 

  • Cimenti M. et al. (2005). Evaluation of microbial indicators for the determination of bacterial groundwater contamination sources. Water, Air, and Soil Pollution 168: 157–169.

    Google Scholar 

  • Clark, A., Turner, T., Dorothy, K. P., Goutham, J., Kalavati, C., & Rajanna, B. (2003). Health hazards due to pollution of waters along the coast of Visakhapatnam, east coast of India. Ecotoxicology Environmental Safety, 56, 390–397.

    Article  CAS  Google Scholar 

  • Dunlap, B. G., & Thies, M. L. (2002). Giardia in beaver (Castor canadensis) and nutria (Myocastor coypus) from east Texas. Journal of Parasitology, 88(6), 1254–1258.

    Google Scholar 

  • Fernandes, C. E. G., Das, A., Nath, B. N., Faria, D. G., & Loka Bharathi, P. A. (2012). Mixed response in bacterial and biochemical variables to simulated sand mining in placer-rich beach sediments, Ratnagiri, West coast of India. Environmental Monitoring and Assessment, 184, 2677–2689.

    Article  CAS  Google Scholar 

  • Finstein, M. S. (1972). Pollution microbiology (p. 127). New York: Dekker.

    Google Scholar 

  • Focardi, S., Specchiulli, A., Spagnoli, F., Fiesoletti, F., & Rossi, C. (2009). A combinated approach to investigate the biochemistry and hydrography of a shallow bay in the South Adriatic Sea: the Gulf of Manfredonia (Italy). Environmental Monitoring and Assessment, 153, 209–220.

    Article  CAS  Google Scholar 

  • Fujioka, R. (2002). Microbial indicators of marine recreational water quality. In C. J. Hurst, R. L. Crawford, G. Knudsen, M. J. McIneney, & L. D. Stetzenbach (Eds.), Manual of environmental microbiology (2nd ed., pp. 234–243). Washington: American Society for Microbiology.

    Google Scholar 

  • Gaur, V. K., Gupta, S. K., Pandey, S. D., Gopal, K., & Misra, V. (2005). Distribution of heavy metals in sediment and water of river Gomti. Environmental Monitoring and Assessment, 102, 1–3.

    Google Scholar 

  • Geldreich, E. E. (1976). Buffalo Lake recreational water quality: a study in bacteriological data interpretation. Water Research, 6, 913–924.

    Google Scholar 

  • George, I., Petit, M., Theate, C., & Servais, P. (2001). Distribution of coliforms in the Seine River and Estuary (France) studied by rapid enzymatic methods and plate counts. Estuaries, 24, 94–102.

    Article  Google Scholar 

  • Gerba, C. P. (2000). Assessment of enteric pathogen shedding by bathers during recreational activity and its impact on water quality. Quantitative Microbiology, 2(1), 55–68.

    Article  Google Scholar 

  • Grande, J. A., Borrego, J., Morales, J. A., & De la Torre, M. L. (2003). A description of how metal pollution occurs in the Tinto–Odiel rias (Huelva-Spain) through the application of cluster analysis. Marine Pollution Bulletin, 46, 475–480.

    Article  CAS  Google Scholar 

  • Grant, M. A. (1997). A new membrane filtration medium for simultaneous detection and enumeration of Escherichia coli and total coliforms. Applied Environmental Microbiology, 63, 3526–3530.

    CAS  Google Scholar 

  • Griffith, J. F., Schiff, K. C., & Lyon, G. S. (2006). Microbiological water quality at non-human impacted reference beaches in southern California during wet weather (Technical report 495). Westminster: Southern California Coastal Water Research Project.

    Google Scholar 

  • Halliday, E., & Gast, R. J. (2011). Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. Environmental Science and Technology, 45, 370–379.

    Article  CAS  Google Scholar 

  • Hansen, B., & Bech, G. (1996). Bacteria associated with a marine planktonic copepod in culture. I. Bacterial genera in seawater, body surface, intestines and fecal pellets and succession during fecal pellet degradation. Journal of Plankton Research, 18, 257–273.

    Article  Google Scholar 

  • Islam, M. S., Siddika, A., Khan, M. N. H., Goldar, M. M., Sadique, M. A., Kabir, A. N. M. H., et al. (2001). Microbiological analysis of tube-well water in a rural area of Bangladesh. Applied Environmental Microbiology, 67, 3328–3330.

    Article  CAS  Google Scholar 

  • Kennish, M. J. (1994). Practical handbook of marine science (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kim, T. G., Choib, E., & Lee, D. (2005). Diffuse and point pollution impacts on the pathogen indicator organism level in the Geum River, Korea. Science of the Total Environment, 350, 94–105.

    Article  CAS  Google Scholar 

  • Kistemann, T., Claben, T., Koch, C., Dangendorf, F., Fischeder, R., Gebel, J., et al. (2002). Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Applied Environmental Microbiology, 68, 2188–2197.

    Article  CAS  Google Scholar 

  • Kobayashi T., Enomoto S., Sakazaki R., a. Kuwahara, S. (1963). A new selective isolation medium for pathogenic vibrios: TCBS-Agar. - Jap. J. Bact., 18; 391–397.

    Google Scholar 

  • Kumarasamy, P., Vignesh, S., Arthur James, R., Muthukumar, K., & Rajendran, A. (2009). Enumeration and identification of pathogenic pollution indicators in Cauvery River, South India. Research Journal of Microbiology, 4, 540–549.

    Article  Google Scholar 

  • Langergraber, G., & Müllegger, E. (2005). Ecological sanitation—a way to solve global sanitation problems? Environmental International, 31, 433–444.

    Article  CAS  Google Scholar 

  • Mallin, M. A., Ensign, S. H., McIver, M. R., Shank, G. C., & Fowler, P. K. (2001). Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. Hydrobiologia, 460, 185–193.

    Article  CAS  Google Scholar 

  • Mashiatullah, A., Chaudhary, M. Z., Ahmad, N., Javed, T., & Abdul, G. (2013). Metal pollution and ecological risk assessment in marine sediments of Karachi Coast, Pakistan. Environmental Monitoring and Assessment, 185, 1555–1565.

    Article  CAS  Google Scholar 

  • McLellan, S. L., Daniels, A. D., & Salmore, A. K. (2003). Clonal populations of thermotolerant Enterobacteriaceae in recreational water and their interference with fecal Escherichia coli counts. Applied Environmental Microbiology, 67, 4934–4938.

    Article  Google Scholar 

  • Mmochi, A.J., & Francis, J. (2003). Land-based activities and sources of pollution to the marine, coastal and associated fresh water ecosystems in the Western Indian Ocean Region. http://hdl.handle.net/1834/209.

  • Mohandass, C., Jaya Kumar, S., Ramaiah, N., & Vethamony, P. (2010). Dispersion and retrievability of water quality indicators during tidal cycles in coastal Salaya, Gulf of Kachchh (West coast of India). Environmental Monitoring and Assessment, 169, 639–645.

    Article  CAS  Google Scholar 

  • Nagvenkar, G. S., & Ramaiah, N. (2009). Abundance of sewage-pollution indicator and human pathogenic bacteria in a tropical estuarine complex. Environmental Monitoring Assessment, 155, 245–256.

    Article  CAS  Google Scholar 

  • Ni, C. Z., & Lin, Y. S. (1986). The primary investigation of fecal Escherichia coli group in Hong Kong coastal waters. Marine Science Bulletin, 5, 45–48.

    Google Scholar 

  • Niewolak, S. (1998). Total viable counts and concentration of enteric bacteria in bottom sediments from the Czarna Hańcza river, Northeast Poland. Polish Journal of Environmental Studies, 7, 295–306.

    Google Scholar 

  • Pardo, R., Vega, M., Debán, L., Cazurro, C., & Carretero, C. (2008). Modelling of chemical fractionation patterns of metals in soils by two-way and three-way principal component analysis. Analytica Chimica Acta, 606, 26–36.

    Article  CAS  Google Scholar 

  • Pathak, S., & Bhattacherjee, J. (1994). Effects of pollutants on survival of Escherichia coli in microcosms of river water. Bulletin Environmental Contamination Toxicology, 53, 198–203.

    Article  CAS  Google Scholar 

  • Ramaiah, N., Kolhe, V., & Sadhasivan, A. (2004). Abundance of pollution indicator and pathogenic bacteria in Mumbai waters. Current Science, 87, 435–439.

    CAS  Google Scholar 

  • Ramteke, P. W., & Tewari, S. (2002). Comparative study of fluorogenic and chromogenic media for specific detection of environmental isolates of thermotolerant Escherichia coli. Environmental Monitoring Assessment, 79, 121–127.

    Article  CAS  Google Scholar 

  • Rozen, Y., & Belkin, B. (2001). Survival of enteric bacteria in seawater. FEMS Microbial Review, 25, 513–529.

    Article  CAS  Google Scholar 

  • Sato, M. I. Z., Bari, M. D., Lamparelli, C. C., Truzzi, A. C., Coelho, M. C. L. S., & Hachich, E. M. (2005). Sanitary quality of sands from marine recreational beaches of Sao Paulo, Brazil. Brazilia Journal of Microbiology, 36(4), 321–326.

    Article  Google Scholar 

  • Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. M., & Lukasik, J. (2002). Microbial source tracking: current methodology and future directions. Applied Environmental Microbiology, 68, 5796–5803.

    Article  CAS  Google Scholar 

  • Shuval, H. (2003). Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment. Journal of Water Health, 2, 53–64.

    Google Scholar 

  • Sinton, L. W., Davies-Colley, R. J., & Bell, R. G. (1998). Inactivation of enterococci and fecal coliforms from sewage and meatwork effluents in seawater chambers. Applied Environmental Microbiology, 60, 2040–2048.

    Google Scholar 

  • Sood, A., Singh, K. D., Pandey, P., & Sharma, S. (2008). Assessment of bacterial indicators and physicochemical parameters to investigate pollution status of the Gangetic river system of Uttarakhand (India). Ecological Indicators, 8, 709–717.

    Article  Google Scholar 

  • Taylor, W. I., Harris, B. (1965). Isolation of shigellae. II. Comparison of plating media and enrichment broths. American Journal of Clinical Pathology 44, 476.

    Google Scholar 

  • Vignesh, S., Muthukumar, K., & James, R. A. (2012). Antibiotic resistant pathogens versus human impacts: a study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin, 64, 790–800.

    Article  CAS  Google Scholar 

  • Vignesh, S., Muthukumar, K., Santhosh Gokul, M., & Arthur James, R. (2013). Microbial pollution indicators in Cauvery river, southern India. MU Ramkumar (Ed.). In: On a sustainable future of the earth's natural resources. Springer: New York. pp 363–376.

  • Vikaskumar, G. H., Dunstan, R. H., Geary, P. M., Coombes, P., Roberts, T. K., & Rothkirch, T. (2007). Comparison of water quality parameters from diverse catchments during dry periods and following rain events. Water Research, 41, 3655–3666.

    Article  Google Scholar 

  • Walid, A., Williams, I. D., & Hudson, M. D. (2013). Metal contamination in water, sediment and biota from a semi-enclosed coastal area. Environmental Monitoring and Assessment, 185, 3879–3895.

    Article  Google Scholar 

  • WHO. (2003). Guidelines for safe recreational water environments: coastal and fresh waters vol. 1. Geneva: WHO.

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of NRF (2012R1A2A2A02012617). The work was also supported by Project “Research environmental-friendly aquaculture technology using BFT (13-AQ-50)”, National Fisheries Research and Development Institute (NFRDI) of South Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans-Uwe Dahms or Rathinam Arthur James.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Seasonal variation of physiochemical parameters in Tamil Nadu beaches (a EC and b TDS) (JPEG 1,890 kb)

Fig. 2

Seasonal variation of pollution indicators in water (W) and sediment (S) samples in urban areas (JPEG 3,502 kb)

Fig. 3

Seasonal variation of pollution indicators in water (W) and sediment (S) samples in semi-urban areas (JPEG 3,792 kb)

Table S1

DOC 23 kb

Table S2

DOC 27 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignesh, S., Dahms, HU., Emmanuel, K.V. et al. Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. Environ Monit Assess 186, 1875–1887 (2014). https://doi.org/10.1007/s10661-013-3501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3501-z

Keywords

Navigation