Skip to main content

Advertisement

Log in

Analysis of monthly average precipitation of Wadi Ouahrane basin in Algeria by using the ITRA, ITPAM, and TPS methods

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Precipitation is one of the most significant components for the basin’s hydrological cycle. Numerous features of a basin’s water circulation may be affected by the chronological, geographical, and seasonal fluctuation of precipitation. It could be an important factor that influences hydrometeorological phenomena including floods and droughts. In this research, the innovative trend risk analysis (ITRA), innovative trend pivot analysis (ITPAM), and trend polygon star (TPS) methodologies of visualizing precipitation data are used to detect precipitation changes at six stations in Algeria’s Wadi Ouahrane basin from 1972 to 2018. ITRA graphs show the direction of the precipitation trend (increasing–decreasing) and the trend risk class. Disparities in the polygons generated by the arithmetic mean and standard deviation ITPAM graphs demonstrate variations in precipitation seasonally and in the seasonal precipitation trends (increasing or decreasing) between sites. The TPS maps depict monthly variations in precipitation and highlight the autumn and spring transitions between the dry and wet seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abu Hammad, A. H. Y., Salameh, A. A. M., & Fallah, R. Q. (2022). Precipitation variability and probabilities of extreme events in the eastern Mediterranean region (Latakia governorate-Syria as a case study). Atmosphere, 13, 131.

    Article  Google Scholar 

  • Achite, M., Ceribasi, G., Ceyhunlu, A. I., Wałęga, A., & Caloiero, T. (2021a). The innovative polygon trend analysis (IPTA) as a simple qualitative method to detect changes in environment—Example detecting trends of the total monthly precipitation in semiarid area. Sustainability, 13(22), 12674.

    Article  Google Scholar 

  • Achite, M., Wałęga, A., Toubal, A. K., Mansour, H., & Krakauer, N. (2021b). Spatiotemporal characteristics and trends of meteorological droughts in the Wadi Mina basin. Northwest Algeria. Water, 13(21), 3103.

    Google Scholar 

  • Achite, M., & Caloiero, T. (2021). Analysis of temporal and spatial rainfall variability over the Wadi Sly basin. Algeria. Arabian Journal of Geosciences, 14, 1867.

    Article  Google Scholar 

  • Alashan, S. (2018). An improved version of innovative trend analyses. Arabian Journal of Geosciences, 11, 50.

    Article  Google Scholar 

  • Alashan, S. (2020). Testing and improving type 1 error performance of Şen’s innovative trend analysis method. Theoretical and Applied Climatology, 142, 1015–1025.

    Article  Google Scholar 

  • Ali, R. O., & Abubaker, S. R. (2019). Trend analysis using Mann-Kendall, Sen’s slope estimator test and innovative trend analysis method in Yangtze River basin, China. International Journal of Engineering & Technology, 8(2), 110–119.

    Google Scholar 

  • Almazroui, M., & Şen, Z. (2020). Trend analyses methodologies in hydro-meteorological records. Earth Systems and Environment, 4(4), 713–738.

    Article  Google Scholar 

  • Asadieh, B., & Krakauer, N. Y. (2015). Global trends in extreme precipitation: Climate models versus observations. Hydrology and Earth System Sciences, 19(2), 877–891.

    Article  Google Scholar 

  • Blain, G. C. (2013). The Mann-Kendall test: The need to consider the interaction between serial correlation and trend. Acta Scientiarum. Agronomy, 35(4), 393–402.

    Article  Google Scholar 

  • Ceribasi, G., & Ceyhunlu, A. I. (2021). Analysis of total monthly precipitation of Susurluk Basin in Turkey using innovative polygon trend analysis method. Journal of Water and Climate Change, 12(5), 1532–1543.

    Article  Google Scholar 

  • Ceribasi, G., Ceyhunlu, A. I., & Ahmed, N. (2021a). Innovative trend pivot analysis method (ITPAM): A case study for precipitation data of Susurluk Basin in Turkey. Acta Geophysica, 69(4), 1465–1480.

    Article  Google Scholar 

  • Ceribasi, G., Ceyhunlu, A. I., & Ahmed, N. (2021b). Analysis of temperature data by using innovative polygon trend analysis and trend polygon star concept methods: A case study for Susurluk Basin. Turkey. Acta Geophysica, 69(5), 1949–1961.

    Article  Google Scholar 

  • Collins, M., Knutti, R,, Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., & Booth, B. B. (2013). Long-term climate change: Projections, commitments and irreversibility. In: Proceedings of Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1029–1136.

  • Croitoru, A. E., & Toma, F. M. (2010). Trends in precipitation and snow cover in central part of Romanian plain. Geographia Technica, 9(1), 1–10.

    Google Scholar 

  • Door, J. P. (2011). Rapport d’information déposé en application de l’article 145 du règlement par la commission des affaires sociales en conclusion des travaux de la mission sur le Médiator et la pharmacovigilance. Assemblée nationale.

    Google Scholar 

  • Güçlü, Y. S. (2018). Multiple Şen-innovative trend analyses and partial Mann-Kendall test. Journal of Hydrology, 566, 685–704.

    Article  Google Scholar 

  • Güçlü, Y. S., Şişman, E., & Dabanlı, İ. (2020). Innovative triangular trend analysis. Arabian Journal of Geosciences, 13(1), 1–8.

    Article  Google Scholar 

  • Harka, A. E., Jilo, N. B., & Behulu, F. (2021). Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of innovative trend analysis method. Journal of Hydrology: Regional Studies, 37, 100915.

    Google Scholar 

  • Hu, Y., & Wang, S. (2021). Associations between winter atmospheric teleconnections in drought and haze pollution over Southwest China. Science of the Total Environment, 766, 142599.

    Article  CAS  Google Scholar 

  • Khedimallah, A., Meddi, M., & Mahé, G. (2020). Characterization of the interannual variability of precipitation and runoff in the Cheliff and Medjerda basins (Algeria). Journal of Earth System Science, 129, 1–25.

    Article  Google Scholar 

  • Kim, G. U., Seo, K. H., & Chen, D. (2019). Climate change over the Mediterranean and current destruction of marine ecosystem. Scientific Reports, 9(1), 1–9.

    Google Scholar 

  • Kingston, D. G., Stagge, J. H., Tallaksen, L. M., & Hannah, D. M. (2015). European-scale drought: Understanding connections between atmospheric circulation and meteorological drought indices. Journal of Climate, 28(2), 505–516.

    Article  Google Scholar 

  • Kisi, O., & Ay, M. (2014). Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology, 513, 362–375.

    Article  CAS  Google Scholar 

  • Littmann, T. (2000). An empirical classification of weather types in the Mediterranean Basin and their interrelation with rainfall. Theoretical and Applied Climatology, 66(3), 161–171.

    Article  Google Scholar 

  • Meddi, M. M., Assani, A. A., & Meddi, H. (2010). Temporal variability of annual rainfall in the Macta and Tafna catchments. Northwestern Algeria. Water Resources Management, 24(14), 3817–3833.

    Article  Google Scholar 

  • Młyński, D., Cebulska, M., & Wałęga, A. (2018). Trends, variability, and seasonality of maximum annual daily precipitation in the upper Vistula basin. Poland. Atmosphere, 9(8), 313.

    Article  Google Scholar 

  • Nishant, N., & Sherwood, S. C. (2021). How strongly are mean and extreme precipitation coupled? Geophysical Research Letters, 48(10), e2020GL092075.

  • Onyutha, C. (2016). Identification of sub-trends from hydro-meteorological series. Stochastic Environmental Research and Risk Assessment, 30(1), 189–205.

    Article  Google Scholar 

  • Pendergrass, A. G., & Hartmann, D. L. (2014). Changes in the distribution of rain frequency and intensity in response to global warming. Journal of Climate, 27(22), 8372–8383.

    Article  Google Scholar 

  • Praveen, B., Talukdar, S., Shahfahad, et al. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Report, 10, 10342.

    Article  CAS  Google Scholar 

  • Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9), 1042–1046.

    Article  Google Scholar 

  • Şen, Z. (2013). Trend identification simulation and application. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000811. Received: March 14, 2012. Accepted: February 28, 2013. Published online: March 04, 2013.

  • Şen, Z. (2021). Conceptual monthly trend polygon methodology and climate change assessments. Hydrological Sciences Journal, 66(3), 503–512.

    Article  Google Scholar 

  • Serinaldi, F., Chebana, F., & Kilsby, C. G. (2020). Dissecting innovative trend analysis. Stochastic Environmental Research and Risk Assessment, 34(5), 733–754.

    Article  Google Scholar 

  • Serinaldi, F., Kilsby, C. G., & Lombardo, F. (2018). Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology. Advances in Water Resources, 111, 132–155.

    Article  Google Scholar 

  • Taibi, S., Meddi, M., Mahé, G., & Assani, A. (2017). Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall. Theoretical and Applied Climatology, 127, 241–257.

    Article  Google Scholar 

  • Tolba, M. K. S., & Najib, W. (2009). Arab environment: Climate change: Impact of climate change on Arab countries. Arab Forum for Environment and Development (AFED), Beirut, Lebanon.‏

  • Toreti, A., Naveau, P., Zampieri, M., Schindler, A., Scoccimarro, E., Xoplaki, E., & Luterbacher, J. (2013). Projections of global changes in precipitation extremes from coupled model intercomparison project phase 5 models. Geophysical Research Letters, 40(18), 4887–4892.

  • Tramblay, Y., El Adlouni, S., & Servat, E. (2013). Trends and variability in extreme precipitation indices over Maghreb countries. Natural Hazards and Earth System Sciences, 13(12), 3235–3248.

    Article  Google Scholar 

  • Turki, I., Laignel, B., Massei, N., Nouaceur, Z., Benhamiche, N., & Madani, K. (2016). Hydrological variability of the Soummam watershed (Northeastern Algeria) and the possible links to climate fluctuations. Arabian Journal of Geosciences, 9(6), 1–12.

    Article  Google Scholar 

  • Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., & Wang, G. (2020). Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science, 14.‏

  • Yue, S., & Wang, C. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3), 201–218.

    Article  Google Scholar 

  • Zeroual, A., Assani, A. A., & Meddi, M. (2017). Combined analysis of temperature and rainfall variability as they relate to climate indices in Northern Algeria over the 1972–2013 period. Hydrology Research, 48(2), 584–595.

    Article  Google Scholar 

  • Zerouali, B., Mesbah, M., Chettih, M., & Djemai, M. (2018). Contribution of cross time-frequency analysis in assessment of possible relationships between large-scale climatic fluctuations and rainfall of northern central Algeria. Arabian Journal of Geosciences, 11, 1–23.

    Article  Google Scholar 

  • Zerouali, B., Elbeltagi, A., Al-Ansari, N., Abda, Z., Chettih, M., Santos, C. A. G., et al. (2022). Improving the visualization of rainfall trends using various innovative trend methodologies with time-frequency-based methods. Applied Water Science, 12(9), 1–19.

    Article  Google Scholar 

  • Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C., & Min, S. K. (2013). Attributing intensification of precipitation extremes to human influence. Geophysical Research Letters, 40(19), 5252–5257.

    Article  Google Scholar 

  • Zhang, Y., & Wu, R. (2021). Asian meteorological droughts on three time scales and different roles of sea surface temperature and soil moisture. International Journal of Climatology, 41(13), 6047–6064.

    Article  Google Scholar 

  • Zhao, Y., Xu, X., Huang, W., Wang, Y., Xu, Y., Chen, H., & Kang, Z. (2019). Trends in observed mean and extreme precipitation within the Yellow River Basin. China. Theoretical and Applied Climatology, 136(3), 1387–1396.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the peer reviewers who improved this manuscript. The authors also thank the ANRH agency for the collected data and the General Directorate of Scientific Research and Technological Development of Algeria (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Gul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achite, M., Ceribasi, G., Wałęga, A. et al. Analysis of monthly average precipitation of Wadi Ouahrane basin in Algeria by using the ITRA, ITPAM, and TPS methods. Environ Monit Assess 195, 606 (2023). https://doi.org/10.1007/s10661-023-11236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11236-3

Keywords

Navigation