Skip to main content

Advertisement

Log in

A multi-layer perceptron–Markov chain based LULC change analysis and prediction using remote sensing data in Prayagraj district, India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Land use land cover (LULC) mapping and temporal observations are indispensable drivers for sustainable development. This research showed the growth trends and land use transition for the Prayagraj district in the last three decades. Supervised classification of Landsat images was performed on 5-year temporal intervals using a maximum likelihood classifier. All satellite images were organized into six major LULC feature classes viz agriculture/open land, barren land, built-up, forest, sand, and water. The overall accuracy of LULC classification was achieved by more than 89% in all seven temporal points. Furthermore, the accuracy of the classified maps was estimated through area-based error matrix. The Land Change Modeler tool of TerrSet 2020 software was used to analyze the transition of classes and to incorporate the multi-layer perceptron–Markov chain (MLP-MC) technique. The transition potentials were included in MLP-MC with the help of sensitive explanatory variables and significant transitions of classes. Furthermore, these transition potentials and the Markov chain transition matrix were used to predict the future LULC dynamics and vulnerability. The change analysis revealed that a significant portion of the agriculture/open land gradually decreased and got converted to built-up land. The results depicted that agriculture/open land was reduced by 8.03% in the last three decades while the built-up region was grown by 199.61%. Forest area was continuously decreasing while the sand area increased due to river meandering. Overall, more than 75% of accuracy was achieved in MLP. The prediction model was first validated with observed data, and then the LULC scenario of 2035 and 2050 was simulated. LULC of 2050 showed that the built-up area would likely reach 13.90% of district area whereas the forest area would remain only 0.79%. The prediction model has given the output in the form of future LULC map along with projected potential transition maps. This would be useful for sustainable urban planning to deal with the alarming rate of built-up growth and agriculture/open land shrinkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The authors are thankful to the USGS Earth Explorer for freely available Landsat datasets for the study area region.

Code availability

Not applicable.

References

  • Aaviksoo, K. (1995). Simulating vegetation dynamics and land use in a mire landscape using a Markov model. Landscape and Urban Planning, 31(1–3), 129–142. https://doi.org/10.1016/0169-2046(94)01045-A

    Article  Google Scholar 

  • Agrawal, S., & Bapurao, K. G. (2021). Cloud-based geospatial mapping and analysis of Prayagraj Kumbh Mela of India: The UNESCO Intangible Cultural Heritage. In Geo-intelligence for Sustainable Development (pp. 17–33). https://doi.org/10.1007/978-981-16-4768-0_2

  • Ahmed, B., & Ahmed, R. (2012). Modeling urban land cover growth dynamics using multi-temporal satellite images: A case study of Dhaka. Bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3–31. https://doi.org/10.3390/ijgi1010003

    Article  Google Scholar 

  • Albattah, M. M. S., & Youssef, S. E. (2021). The potential of space geomatics engineering applications in transportation analysis and planning. The Egyptian Journal of Remote Sensing and Space Science, 24(1), 29–40. https://doi.org/10.1016/j.ejrs.2019.10.001

    Article  Google Scholar 

  • Allam, M., Bakr, N., & Elbably, W. (2019). Multi-temporal assessment of land use/land cover change in arid region based on landsat satellite imagery: Case study in Fayoum Region. Egypt. Remote Sensing Applications: Society and Environment, 14(February), 8–19. https://doi.org/10.1016/j.rsase.2019.02.002

    Article  Google Scholar 

  • Alqadhi, S., Mallick, J., Balha, A., Bindajam, A., Singh, C. K., & Hoa, P. V. (2021). Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir. Saudi Arabia. Earth Science Informatics, 14(3), 1547–1562. https://doi.org/10.1007/s12145-021-00633-2

    Article  Google Scholar 

  • Alshari, E. A., & Gawali, B. W. (2021). Development of classification system for LULC using remote sensing and GIS. Global Transitions Proceedings, 2(1), 8–17. https://doi.org/10.1016/j.gltp.2021.01.002

    Article  Google Scholar 

  • Anand, V., & Oinam, B. (2020). Future land use land cover prediction with special emphasis on urbanization and wetlands. Remote Sensing Letters, 11(3), 225–234. https://doi.org/10.1080/2150704X.2019.1704304

    Article  Google Scholar 

  • Bagaria, P., Nandy, S., Mitra, D., & Sivakumar, K. (2021). Monitoring and predicting regional land use and land cover changes in an estuarine landscape of India. Environmental Monitoring and Assessment, 193(3), 124. https://doi.org/10.1007/s10661-021-08915-4

    Article  Google Scholar 

  • Berberoğlu, S., Akın, A., & Clarke, K. C. (2016). Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landscape and Urban Planning, 153, 11–27. https://doi.org/10.1016/j.landurbplan.2016.04.017

    Article  Google Scholar 

  • Briassoulis, H. (2020). Analysis of Land Use Change : Theoretical and Modeling Approaches. (S. Loveridge & R. Jackson, Eds.) (2nd ed.). WVU Research Repository.

  • Card, D. H. (1982). Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48(3), 431–439.

    Google Scholar 

  • Census of India. (2011). District Census Handbook, Allahabad.

  • Chughtai, A. H., Abbasi, H., & Karas, I. R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22(March), 100482. https://doi.org/10.1016/j.rsase.2021.100482

  • Cochran, W. G. (1977). Sampling techniques. John Wiley & Sons.

    Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Article  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 46(October 1990), 35–46.

  • Dietzel, C., & Clarke, K. C. (2007). Toward optimal calibration of the SLEUTH land use change model. Transactions in GIS, 11(1), 29–45. https://doi.org/10.1111/j.1467-9671.2007.01031.x

    Article  Google Scholar 

  • Directorate of Census operations, U. P. (2011). District Census handbook Allahabad: Village and town Directory.

  • Eastman, J. R. (2020). TerrSet2020 Manual.

  • Gabril, E. M. A., Denis, D. M., Nath, S., Paul, A., & Kumar, M. (2019). Quantifying LULC change and landscape fragmentation in Prayagraj district, India using geospatial techniques. The Pharma Innovation Journal, 8(5), 670–675. http://www.thepharmajournal.com/

  • Gardner, M., & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0

    Article  CAS  Google Scholar 

  • Hornik, K. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  • Iacono, M., Levinson, D., El-Geneidy, A., & Wasfi, R. (2012). Markov chain model of land use change in the Twin Cities. TeMA-Journal of Land Use, Mobility and Environment, 8(3), 1–24. https://doi.org/10.6092/1970-9870/2985

    Article  Google Scholar 

  • Kar, R., Obi Reddy, G. P., Kumar, N., & Singh, S. K. (2018). Monitoring spatio-temporal dynamics of urban and peri-urban landscape using remote sensing and GIS – A case study from Central India. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 401–411. https://doi.org/10.1016/j.ejrs.2017.12.006

    Article  Google Scholar 

  • Kassawmar, T., Eckert, S., Hurni, K., Zeleke, G., & Hurni, H. (2018). Reducing landscape heterogeneity for improved land use and land cover (LULC) classification across the large and complex Ethiopian highlands. Geocarto International, 33(1), 53–69. https://doi.org/10.1080/10106049.2016.1222637

    Article  Google Scholar 

  • Khawaldah, H. A., Farhan, I., & Alzboun, N. M. (2020). Simulation and prediction of land use and land cover change using GIS, remote sensing and CA-Markov model. Global Journal of Environmental Science and Management, 6(2), 215–232. https://doi.org/10.22034/GJESM.2020.02.07

  • Khwarahm, N. R., Najmaddin, P. M., Ararat, K., & Qader, S. (2021a). Past and future prediction of land cover land use change based on earth observation data by the CA–Markov model: A case study from Duhok governorate. Iraq. Arabian Journal of Geosciences, 14(15), 1544. https://doi.org/10.1007/s12517-021-07984-6

    Article  Google Scholar 

  • Khwarahm, N. R., Qader, S., Ararat, K., & Fadhil Al-Quraishi, A. M. (2021b). Predicting and mapping land cover/land use changes in Erbil /Iraq using CA-Markov synergy model. Earth Science Informatics, 14(1), 393–406. https://doi.org/10.1007/s12145-020-00541-x

    Article  Google Scholar 

  • Kumar, R., Nandy, S., Agarwal, R., & Kushwaha, S. P. S. (2014). Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecological Indicators, 45(October), 444–455. https://doi.org/10.1016/j.ecolind.2014.05.003

    Article  Google Scholar 

  • Kumar, V., & Agrawal, S. (2019). Agricultural land use change analysis using remote sensing and GIS: A case study of Allahabad, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W6(3/W6), 397–402. https://doi.org/10.5194/isprs-archives-XLII-3-W6-397-2019

  • Kushwaha, S. P. S., Nandy, S., Shah, M. A., Agarwal, R., & Mukhopadhyay, S. (2018). Forest cover monitoring and prediction in a lesser Himalayan elephant landscape. Current Science, 115(3), 510. https://doi.org/10.18520/cs/v115/i3/510-516

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and Image interpretation (5th ed.). John Wiley & Sons.

  • Lu, Y., Wu, P., Ma, X., & Li, X. (2019). Detection and prediction of land use/land cover change using spatiotemporal data fusion and the cellular automata–Markov model. Environmental Monitoring and Assessment, 191(2), 68. https://doi.org/10.1007/s10661-019-7200-2

    Article  Google Scholar 

  • Mare, M.-R.R., & Mihai, B.-A. (2016). Mapping land cover using remote sensing data and GIS techniques : A case study of Prahova Subcarpathians. Procedia Environmental Sciences, 32, 244–255. https://doi.org/10.1016/j.proenv.2016.03.029

    Article  Google Scholar 

  • Megahed, Y., Cabral, P., Silva, J., & Caetano, M. (2015). Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. ISPRS International Journal of Geo-Information, 4(3), 1750–1769. https://doi.org/10.3390/ijgi4031750

    Article  Google Scholar 

  • Mirkatouli, J., Hosseini, A., & Neshat, A. (2015). Analysis of land use and land cover spatial pattern based on Markov chains modelling. City, Territory and Architecture, 2(1), 4. https://doi.org/10.1186/s40410-015-0023-8

    Article  Google Scholar 

  • Mishra, V. K., & Pant, T. (2020). Mapping and prediction of urban area with Markov-CA model using Landsat-8 images for effective management of urban area in Prayagraj City. In 2020 URSI Regional Conference on Radio Science (URSI-RCRS) (pp. 1–5). IEEE. https://doi.org/10.23919/URSIRCRS49211.2020.9113566

  • Mishra, V. N., & Rai, P. K. (2016). A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar). India. Arabian Journal of Geosciences, 9(4), 249. https://doi.org/10.1007/s12517-015-2138-3

    Article  Google Scholar 

  • Mishra, V. N., Rai, P. K., Prasad, R., Punia, M., & Nistor, M.-M. (2018). Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: A comparison of hybrid models. Applied Geomatics, 10(3), 257–276. https://doi.org/10.1007/s12518-018-0223-5

    Article  Google Scholar 

  • Mishra, V., Rai, P., & Mohan, K. (2014). Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute Jovan Cvijic, SASA, 64(1), 111–127. https://doi.org/10.2298/IJGI1401111M

    Article  Google Scholar 

  • Moniruzzam, M., Roy, A., Bhatt, C. M., Gupta, A., An, N. T. T., & Hassan, M. R. (2018). Impact analysis of urbanization on land use land cover change for Khulna City, Bangladesh using temporal Landsat imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII5(November), 757–760. https://doi.org/10.5194/isprs-archives-XLII-5-757-2018

  • Morshed, N., Yorke, C., & Zhang, Q. (2017). Urban expansion pattern and land use dynamics in Dhaka, 1989–2014. The Professional Geographer, 69(3), 396–411. https://doi.org/10.1080/00330124.2016.1268058

    Article  Google Scholar 

  • Mozumder, C., & Tripathi, N. K. (2014). Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland Deepor Beel in Northeast India using a multi-layer perceptron neural network. International Journal of Applied Earth Observation and Geoinformation, 32(1), 92–104. https://doi.org/10.1016/j.jag.2014.03.002

    Article  Google Scholar 

  • MSME, G. (2011). District Industrial Profile of Allahabad District. Allahabad.

    Google Scholar 

  • Nasiri, V., Darvishsefat, A. A., Rafiee, R., Shirvany, A., & Hemat, M. A. (2019). Land use change modeling through an integrated multi-layer perceptron neural network and Markov chain analysis (case study: Arasbaran region, Iran). Journal of Forestry Research, 30(3), 943–957. https://doi.org/10.1007/s11676-018-0659-9

    Article  Google Scholar 

  • Nath, B., Wang, Z., Ge, Y., Islam, K., Singh, P., & R., & Niu, Z. (2020). Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. ISPRS International Journal of Geo-Information, 9(2), 134. https://doi.org/10.3390/ijgi9020134

    Article  Google Scholar 

  • Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015

    Article  Google Scholar 

  • Olofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129, 122–131. https://doi.org/10.1016/j.rse.2012.10.031

    Article  Google Scholar 

  • Pontius, R. G. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing, 66(8), 1011–1016.

    Google Scholar 

  • Pour, N. M., & Oja, T. (2021). Prediction power of logistic regression (LR) and multi-layer perceptron (MLP) models in exploring driving forces of urban expansion to be sustainable in Estonia. Sustainability, 14(1), 160. https://doi.org/10.3390/su14010160

    Article  Google Scholar 

  • Rahman, M. T. U., Tabassum, F., Rasheduzzaman, M., Saba, H., Sarkar, L., Ferdous, J., et al. (2017). Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environmental Monitoring and Assessment, 189(11), 565. https://doi.org/10.1007/s10661-017-6272-0

    Article  Google Scholar 

  • Roy, A., & Inamdar, A. B. (2019). Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon, 5(4), e01478. https://doi.org/10.1016/j.heliyon.2019.e01478

  • Roy, D. P., & Yan, L. (2020). Robust Landsat-based crop time series modelling. Remote Sensing of Environment, 238(March), 110810. https://doi.org/10.1016/j.rse.2018.06.038

  • Saha, A. K., & Agrawal, S. (2020). Mapping and assessment of flood risk in Prayagraj district, India: A GIS and remote sensing study. Nanotechnology for Environmental Engineering, 5(2), 11. https://doi.org/10.1007/s41204-020-00073-1

    Article  CAS  Google Scholar 

  • Sarif, M. O., & Gupta, R. D. (2021). Comparative evaluation between Shannon’s entropy and spatial metrics in exploring the spatiotemporal dynamics of urban morphology: a case study of Prayagraj City, India (1988–2018). Spatial Information Research, 29(6), 961–979. https://doi.org/10.1007/s41324-021-00406-5

    Article  Google Scholar 

  • Saxena, A., & Jat, M. K. (2020). Land suitability and urban growth modeling: Development of SLEUTH-Suitability. Computers, Environment and Urban Systems, 81(February), 101475. https://doi.org/10.1016/j.compenvurbsys.2020.101475

  • Shalaby, A. S., & Tateishi, R. (2007). Remote Sensing and GIS for Mapping and Monitoring Land Cover and Land-Use Changes in the Northwestern Coastal Zone of Egypt, 27, 28–41. https://doi.org/10.1016/j.apgeog.2006.09.004

    Article  Google Scholar 

  • Shen, L., Li, J. B., Wheate, R., Yin, J., & Paul, S. S. (2020). Multi-layer perceptron neural network and Markov chain based geospatial analysis of land use and land cover change. Journal of Environmental Informatics Letters, 3(1), 29–39. https://doi.org/10.3808/jeil.202000023

    Article  Google Scholar 

  • Shen, Lei. (2019). Multi-layer perceptron - Markov chain based geospatial analysis of land use and land cover change: A case study of Stoney Creek Watershed, BC, Canada. University of Northern British Columbia. Retrieved from https://unbc.arcabc.ca/islandora/object/unbc%3A58966

  • Siddiqui, A., Siddiqui, A., Maithani, S., Jha, A. K., Kumar, P., & Srivastav, S. K. (2018). Urban growth dynamics of an Indian metropolitan using CA Markov and logistic regression. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 229–236. https://doi.org/10.1016/j.ejrs.2017.11.006

    Article  Google Scholar 

  • Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environmental Processes, 2(1), 61–78. https://doi.org/10.1007/s40710-015-0062-x

    Article  Google Scholar 

  • Torahi, A. A., & Rai, S. C. (2011). Land cover classification and forest change analysis , using satellite imagery - A case study in Dehdez Area of Zagros Mountain in Iran. Journal of Geographic Information System, 3(January), 1–11.

  • United Nations. (2018). Transforming our world: The 2030 Agenda for Sustainable Development. In A New Era in Global Health. New York, NY: Springer Publishing Company. https://doi.org/10.1891/9780826190123.ap02

  • United Nations. (2019). The sustainable development goals report 2019. (L. Jensen, Ed.) United Nations Publication. New York, USA: United Nations publication issued by the Department of Economic and Social Affairs. https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf

  • Veldkamp, A., & Fresco, L. O. (1996). CLUE: A conceptual model to study the Conversion of Land Use and its Effects. Ecological Modelling, 85(2–3), 253–270. https://doi.org/10.1016/0304-3800(94)00151-0

    Article  Google Scholar 

  • Vinayak, B., Lee, H. S., & Gedem, S. (2021). Prediction of land use and land cover changes in Mumbai City, India, using remote sensing data and a multilayer perceptron neural network-based Markov chain model. Sustainability, 13(2), 471. https://doi.org/10.3390/su13020471

    Article  Google Scholar 

  • Wang, J., & Maduako, I. N. (2018). Spatio-temporal urban growth dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC modeling and prediction. European Journal of Remote Sensing, 51(1), 251–265. https://doi.org/10.1080/22797254.2017.1419831

    Article  Google Scholar 

  • Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, 64(3), 273–284. https://doi.org/10.1006/jema.2001.0509

    Article  Google Scholar 

  • Xu, G., Dong, T., Cobbinah, P. B., Jiao, L., Sumari, N. S., Chai, B., & Liu, Y. (2019). Urban expansion and form changes across African cities with a global outlook: Spatiotemporal analysis of urban land densities. Journal of Cleaner Production, 224, 802–810. https://doi.org/10.1016/j.jclepro.2019.03.276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Ethics declarations

Ethics approval

The manuscript has been read and approved for submission by all the named authors.

Consent to participate

The authors unanimously agreed to participate in the study.

Consent for publication

The authors are agreed for publication of this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Agrawal, S. A multi-layer perceptron–Markov chain based LULC change analysis and prediction using remote sensing data in Prayagraj district, India. Environ Monit Assess 195, 619 (2023). https://doi.org/10.1007/s10661-023-11205-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11205-w

Keywords

Navigation