Skip to main content
Log in

Comparative evaluation between Shannon's entropy and spatial metrics in exploring the spatiotemporal dynamics of urban morphology: a case study of Prayagraj City, India (1988–2018)

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

This study aims to explore transformations of urban morphology in an Indian city, Prayagraj because it widely unexplored. This work is examined by Shannon’s entropy, relative entropy, density index, and spatial metrics [percentage of landscape (PLAND), number of patches (NP), and patch density (PD)] to evaluate the state of compactness or, dispersion over the landscape in the study area. The built-up growth has shown increased from 25.385 to 98.942 km2 during 1988–2018. Shannon’s entropy results are indicating enlargement of urban sprawl from 1.48 to 1.77 during 1988–2018. Relative entropy results are found dispersed growth in 1988 (i.e., 0.594) to compact growth in 2018 (i.e., 0.246). Density index has shown drastic growth in core city (0–6 km) during 1988–2018. Spatial metrics results are showed growth of 16.26% in PLAND, 11507 in NP, and 2543.634 in PD during 1988–2018 respectively. While mean PLAND has shown that growth has been declining from city center to Zone-6 in 1988, 1997, 2008, and 2018. The mean NP, and mean PD profiling results have shown a reverse trend to mean PLAND in said time points. But urban growth has concentrated highly on city center to Zone-4 (0–8 km) in compacting mode and lowly on Zone-4 to Zone-6 (8–12 km) in dispersion mode. Therefore, 0–8 km area requires more emphasis on policy making within sustainable sphere thinking while 8–12 km area relatively needs more attentions for controlling measures for future urban planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Antrop, M. (2000). Changing patterns in the urbanized countryside of Western Europe. Landscape Ecology, 15(3), 257–270. https://doi.org/10.1023/A:1008151109252

    Article  Google Scholar 

  2. Xu, C., Liu, M., Zhang, C., An, S., Yu, W., & Chen, J. M. (2007). The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landscape Ecology, 22, 925–937. https://doi.org/10.1007/s10980-007-9079-5

    Article  Google Scholar 

  3. UN. (2018). The World’s Cities in 2018. Department of economic and social affairs, population division. The World’s Cities in 2018—Data Booklet (ST/ESA/ SER.A/417), UN, 1–34. Retrieved from https://digitallibrary.un.org/record/3799524?ln=en.

  4. Alberti, M. (2005). The effects of urban patterns on ecosystem function. International Regional Science Review, 28(2), 168–192. https://doi.org/10.1177/0160017605275160

    Article  Google Scholar 

  5. Shukla, P. R., Skea, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., Ferrat, M., & Malley, J. (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/20. IPCC (AR6). https://doi.org/10.4337/9781784710644

  6. Redman, C. L. (1999). Human dimensions of ecosystem studies. Ecosystems, 2, 296–298.

    Article  Google Scholar 

  7. Xu, G., Jiao, L., Liu, J., Shi, Z., Zeng, C., & Liu, Y. (2019). Understanding urban expansion combining macro patterns and micro dynamics in three Southeast Asian megacities. Science of the Total Environment, 660, 375–383. https://doi.org/10.1016/j.scitotenv.2019.01.039

    Article  Google Scholar 

  8. Xu, G., Dong, T., Cobbinah, P. B., Jiao, L., Sumari, N. S., Chai, B., & Liu, Y. (2019). Urban expansion and form changes across African cities with a global outlook: Spatiotemporal analysis of urban land densities. Journal of Cleaner Production, 224, 802–810. https://doi.org/10.1016/j.jclepro.2019.03.276

    Article  Google Scholar 

  9. Shukla, A., & Jain, K. (2019). Critical analysis of spatial-temporal morphological characteristic of urban landscape. Arabian Journal of Geosciencesbian Journal of Geoscience, 12(112), 1–14.

    Google Scholar 

  10. Kumar, M., Garg, P. K., & Khare, D. (2008). Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International journal of Applied earth Observation and Geoinformation, 10, 26–43. https://doi.org/10.1016/j.jag.2007.04.002

    Article  Google Scholar 

  11. Gupta, S., Islam, S., & Hasan, M. M. (2018). Analysis of impervious land-cover expansion using remote sensing and GIS: A case study of Sylhet sadar upazila. Applied Geography, 98, 156–165. https://doi.org/10.1016/j.apgeog.2018.07.012

    Article  Google Scholar 

  12. Alturk, B., & Konukcu, F. (2019). Modeling land use/land cover change and mapping morphological fragmentation of agricultural lands in Thrace Region/Turkey. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-019-00485-3

    Article  Google Scholar 

  13. Fenta, A. A., Yasuda, H., Haregeweyn, N., Belay, S., Hadush, Z., & Gebremedhin, M. A. (2017). The dynamics of urban expansion and land use/land cover changes using remote sensing and spatial metrics: the case of Mekelle City of northern Ethiopia. International Journal of Remote Sensing, 38(14), 4107–4129. https://doi.org/10.1080/01431161.2017.1317936

    Article  Google Scholar 

  14. Das, T., Chakraborty, S., & Samanta, K. (2016). Urban sprawl and urban growth detection analysis: A comparative study of Kolkata municipal corporation and Haora municipal corporation. International Journal of Geomatics and Geosciences, 7(1), 82–92.

    Google Scholar 

  15. Anees, M. M., Sajjad, S., & Joshi, P. K. (2019). Characterizing urban area dynamics in historic city of Kurukshetra, India, using remote sensing and spatial metric tools. Geocarto International, 34(14), 1584–1607. https://doi.org/10.1080/10106049.2018.1499819

    Article  Google Scholar 

  16. Radhakrishnan, N., & Kumar, S. (2014). Analysis of urban sprawl pattern in Tiruchirappalli City using applications of remote sensing and GIS. Arabian Journal of Science and Engineering. https://doi.org/10.1007/s13369-014-1099-2

    Article  Google Scholar 

  17. Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5(1), 29–39. https://doi.org/10.1016/j.jag.2003.08.002

    Article  Google Scholar 

  18. Jiao, L. (2017). Urban land density function: A new method to characterize urban expansion. Landscape and Urban Planning, 139, 26–39. https://doi.org/10.1016/j.landurbplan.2015.02.017

    Article  Google Scholar 

  19. Shikary, C., & Rudra, S. (2020). Measuring urban land use change and sprawl using geospatial techniques: A study on Purulia Municipality, West Bengal, India. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-020-01212-6

    Article  Google Scholar 

  20. Ozturk, D. (2017). Assessment of urban sprawl using Shannon’s entropy and fractal analysis: A case study of Atakum, Ilkadim and Canik (Samsun, Turkey). Journal of Environmental Engineering and Landscape Management, 25(3), 264–276. https://doi.org/10.3846/16486897.2016.1233881

    Article  Google Scholar 

  21. Liu, M., Hu, Y. M., & Li, C. L. (2017). Landscape metrics for three-dimensional urban building pattern recognition. Applied Geography, 87, 66–72. https://doi.org/10.1016/j.apgeog.2017.07.011

    Article  Google Scholar 

  22. Chettry, V., & Surawar, M. (2021). Assessment of urban sprawl characteristics in Indian cities using remote sensing: Case studies of Patna, Ranchi, and Srinagar. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-01149-3

    Article  Google Scholar 

  23. Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad, A. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359. https://doi.org/10.1016/j.jum.2020.05.004

    Article  Google Scholar 

  24. Pathak, C., Chandra, S., Maurya, G., Rathore, A., Sarif, M. O., & Gupta, R. D. (2020). The effects of land indices on thermal state in surface urban heat island formation: A case study on Agra City in India using remote sensing data (1992–2019). Earth Systems and Environment. https://doi.org/10.1007/s41748-020-00172-8

    Article  Google Scholar 

  25. Chaturvedi, R. (2014). Application of remote sensing and GIS in land use/land covers mapping in Allahabad District. International Journal of Advanced Information in Engineering Technology, 4(4), 1–9.

    Article  Google Scholar 

  26. Srivastava, S. K., & Gupta, R. D. (2003). Monitoring of changes in land use/land cover using multi-sensor satellite data. In 6th International Conference on GIS/GPS/RS: Map India 2003. New Delhi.

  27. Singh, A., Singh, S., Kumar, P., & Khanduri, K. (2013). Land use and land cover change detection: A comparative approach using post classification change matrix and discriminate function change detection methodology of Allahabad City. International Journal of Current Engineering and Technology, 33(1), 142–148.

    Google Scholar 

  28. Kumar, V., & Agrawal, S. (2019). Agricultural land use change analysis using remote sensing and GIS: A case study of Allahabad, India. In ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XLII-3/W6, pp. 397–402). New Delhi. https://doi.org/10.5194/isprs-archives-xlii-3-w6-397-2019

  29. MoHUA. (2015). Smart Citie: Ministry of Housing and Urban Affairs Reports, Government of India. New Delhi, India. Retrieved from http://www.mhupa.gov.in/Default.aspx?ReturnUrl=%2F

  30. PNN. (2019). Prayag Kumbh. Prayagraj Nagar Nigam, Government of Uttar Pradesh. Retrieved October 22, 2019, from allahabadmc.gov.in/kumbh_mela.html

  31. Nanda, M. K. (2018). Climatic classification. In D. K. Khan (Ed.), Environmental science (pp. 1–16).

  32. IMD. (2010). Allahabad climatological table (period: 1981–2010). Indian Meteorological Department, Government of India. Retrieved October 22, 2019, from http://www.imd.gov.in/section/climate/extreme/allahabad2.htm

  33. Sarif, M. O., Rimal, B., & Stork, N. E. (2020). Assessment of changes in land use/land cover and land surface temperatures and their impact on surface urban heat island phenomena in the Kathmandu Valley (1988–2018). ISPRS International Journal of Geo-Information, 9(12), 1–29. https://doi.org/10.3390/ijgi9120726

    Article  Google Scholar 

  34. Dissanayake, D., Morimoto, T., Murayama, Y., & Ranagalage, M. (2019). Impact of landscape structure on the variation of land surface temperature in sub-Saharan region: A case study of Addis Ababa using landsat data. Sustainability, 11(8), 1–18. https://doi.org/10.3390/su11082257

    Article  Google Scholar 

  35. Fonji, S. F., & Taff, G. N. (2014). Using satellite data to monitor land-use land-cover change in North-eastern Latvia. Springerplus, 3(61), 1–15.

    Google Scholar 

  36. Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y., Zhang, H., & Mushore, T. D. (2018). Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using landsat data: A case study of Metropolitan City Tehran (1988–2018). Sustainability, 10(12), 1–25. https://doi.org/10.3390/su10124433

    Article  Google Scholar 

  37. Patel, S. K., Verma, P., & Sinsh, G. S. (2019). Agricultural growth and land use land cover change in peri-urban India. Environmental Monitoring and Assessment, 191(600), 1–17.

    Google Scholar 

  38. Sarif, M. O., & Gupta, R. D. (2021). Spatiotemporal mapping of Land Use/Land Cover dynamics using Remote Sensing and GIS approach: a case study of Prayagraj City, India (1988–2018). Environment Development Sustainability. https://doi.org/10.1007/s10668-021-01475-0

  39. Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Sciences, 20(1), 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003

    Article  Google Scholar 

  40. Ranagalage, M., Murayama, Y., Dissanayake, D., & Simwanda, M. (2019). The Impacts of landscape changes on annual mean land surface temperature in the Tropical Mountain City of Sri Lanka: A case study of Nuwara Eliya (1996–2017). Sustainability, 11(19), 1–27. https://doi.org/10.3390/su11195517

    Article  Google Scholar 

  41. Ranagalage, M., Wang, R., Gunarathna, M. H. J. P., Dissanayake, D., Murayama, Y., & Simwanda, M. (2019). Spatial forecasting of the landscape in rapidly urbanizing hill stations of South Asia: A case study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sensing, 11(15), 1–31. https://doi.org/10.3390/rs11151743

    Article  Google Scholar 

  42. Chettry, V., & Surawar, M. (2020). Urban sprawl assessment in Raipur and Bhubaneswar urban agglomerations from 1991 to 2018 using geoinformatics. Arabian Journal of Geosciences, 13(667), 1–17. https://doi.org/10.1007/s12517-020-05693-0

    Article  Google Scholar 

  43. Bhatta, B. (2010). Analysis of urban growth and sprawl from remote sensing data. Springer. https://doi.org/10.1007/978-3-642-05299-6

    Book  Google Scholar 

  44. Polsbyt, D. D., & Poppertt, R. D. (1991). The third criterion: Compactness as a procedural safeguard against Partisan Gerrymandering. Yale Law & Policy Review, 9(301), 301–353.

    Google Scholar 

  45. Hagen-Zanker, A. (2006). Map comparison methods that simultaneously address overlap and structure. Journal of Geographical Systems, 8(2), 165–185. https://doi.org/10.1007/s10109-006-0024-y

    Article  Google Scholar 

  46. Luck, M., & Wu, J. (2002). A gradient analysis of urban landscape pattern: A case study from the from the Phoenix metropolitan region, Arizona, USA. Landscape Ecology, 17, 327–339. https://doi.org/10.1023/A:1020512723753.

    Article  Google Scholar 

  47. Herold, M., Couclelis, H., & Clarke, K. C. (2005). The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 29(4), 369–399. https://doi.org/10.1016/j.compenvurbsys.2003.12.001

    Article  Google Scholar 

  48. Krajewski, P. (2017). Assessing change in a high-value landscape: Case study of the municipality of Sobotka, Poland. Polish Journal of Environmental Studies, 26(6), 2603–2610. https://doi.org/10.15244/pjoes/70896

    Article  Google Scholar 

  49. Turok, I., & Borel-saladin, J. M. (2014). Is urbanisation in South Africa on a sustainable trajectory? Development Southern Africa, 31(5), 675–691. https://doi.org/10.1080/0376835X.2014.937524

    Article  Google Scholar 

  50. Gumma, M. K., Mohammad, I., Nedumaran, S., Whitbread, A., & Lagerkvist, C. J. (2017). Urban sprawl and adverse impacts on agricultural land: A case study on Hyderabad, India. Remote Sensing, 9(11), 1–16. https://doi.org/10.3390/rs9111136

    Article  Google Scholar 

  51. Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India: A remote sensing based estimate. Sustainable Cities and Society, 32, 100–114. https://doi.org/10.1016/j.scs.2017.02.018

    Article  Google Scholar 

  52. Shahfahad, A., Kumari, B., Tayyab, M., Hang, H. T., Khan, M. F., & Rahman, A. (2019). Assessment of public open spaces (POS) and landscape quality based on per capita POS index in Delhi, India. SN Applied Sciences. https://doi.org/10.1007/s42452-019-0372-0

    Article  Google Scholar 

  53. Chakraborti, S., Banerjee, A., Sannigrahi, S., Pramanik, S., Maiti, A., & Jha, S. (2019). Assessing the dynamic relationship among land use pattern and land surface temperature: A spatial regression approach. Asian Geographer. https://doi.org/10.1080/10225706.2019.1623054

    Article  Google Scholar 

  54. Mengistu, D. A., & Salami, A. T. (2007). Application of remote sensing and GIS inland use/land cover mapping and change detection in a part of south western Nigeria. African Journal of Environmental Science and Technology, 1(5), 99–109.

    Google Scholar 

  55. Sharma, R., Chakraborty, A., & Joshi, P. K. (2015). Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environmental Monitoring and Assessment, 187(1), 1–12. https://doi.org/10.1007/s10661-014-4206-7

    Article  Google Scholar 

  56. Angel, S., Franco, S. A., Liu, Y., & Blei, A. M. (2020). The shape compactness of urban footprints. Progress in Planning, 139, 3–5. https://doi.org/10.1016/j.progress.2018.12.001

    Article  Google Scholar 

  57. Nagendra, H., Bai, X., Brondizio, E. S., & Lwasa, S. (2018). The urban south and the predicament of global sustainability. Nature Sustainability, 1, 341–349.

    Article  Google Scholar 

  58. Wang, C., Wang, Y., Wang, R., & Zheng, P. (2018). Modeling and evaluating land-use land-cover change for urban planning and sustainability: A case study of Dongying city, China. Journal of Cleaner, 172, 1529–1534.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the USGS portal for freely availing the long periods (1988–2018) satellite Landsat datasets. Md. Omar Sarif is grateful to UGC for providing a financial assistantship through Maulana Azad National Fellowship for Minority Students (MANF) scheme by the Ministry of Minority Affairs, Government of India for pursuing his Ph.D. research work (Award Letter No. F1-17.1/2017-18/MANF-2017-18-WES-84175/(SA-III/Website)). Authors are also very thankful to Editor-in-Chief and blind reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The topic has Conceptualized by M.O.S. and R.D.G.; Methodology, M.O.S., and R.D.G.; Validation, M.O.S.; Formal Analysis, M.O.S.; Investigation, M.O.S.; Resources, M.O.S., and R.D.G.; Data Curation, M.O.S., and R.D.G.; Writing-Original Draft Preparation, M.O.S.; Writing-Review & Editing, M.O.S., and R.D.G.; Visualization, M.O.S.; Supervising, R.D.G.

Corresponding author

Correspondence to Md. Omar Sarif.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarif, M.O., Gupta, R.D. Comparative evaluation between Shannon's entropy and spatial metrics in exploring the spatiotemporal dynamics of urban morphology: a case study of Prayagraj City, India (1988–2018). Spat. Inf. Res. 29, 961–979 (2021). https://doi.org/10.1007/s41324-021-00406-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-021-00406-5

Keywords

Navigation