Skip to main content

Advertisement

Log in

Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: a comparison of hybrid models

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Land use/land cover changes (LULCC) are one of the foremost aspects of environmental changes caused by human-induced activities mainly in rapidly developing areas. This study endeavors to evaluate and compare three hybrid models: stochastic Markov chain (ST-MC), cellular automata-Markov chain (CA-MC), and multi-layer perceptron-Markov chain (MLP-MC) to predict future land use/land cover (LULC) scenario in Varanasi district. LULC information extracted for years 1988 and 2001 was first employed to predict LULC scenario for 2015 using three hybrid models. The predicted results were compared with the observed LULC information for the year 2015 to appraise the validity of models through kappa index statistics. The MLP-MC model yielded reliable and best results. Finally, based on this consequence, the prediction of future LULC scenarios for years 2030 and 2050 was performed. The findings of this study exhibited the constant but overall increase of built up area and a considerable reduction in agricultural land. The results also demonstrate the potentiality of MLP-MC hybrid model for better understanding of spatio-temporal dynamics and predicting future landsacpe scenario in Varanasi district of Uttar Pradesh, India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adhikari S, Southworth J (2012) Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model: a remote sensing approach. Remote Sens 4:3215–3243

    Article  Google Scholar 

  • Ahmed B, Ahmed R (2012) Modeling urban land cover growth dynamics using multi-temporal satellite images: a case study of Dhaka, Bangladesh. ISPRS Int J Geo-Inf 1:3–31

    Article  Google Scholar 

  • Al-sharif AA, Pradhan B (2014a) Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J Indian Soc Remote Sens 42(1):149–163

    Article  Google Scholar 

  • Al-sharif AA, Pradhan B (2014b) Monitoring and predicting land use change in Tripoli metropolitan city using an integrated Markov chain and cellular automata models in GIS. Arab J Geosci 7:4291–4301

    Article  Google Scholar 

  • Araya YH, Cabral P (2010) Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sens 2(6):1549–1563

    Article  Google Scholar 

  • Arsanjani JJ, Kainz W, Mousivand AJ (2011) Tracking dynamic land-use change using spatially explicit Markov chain based on cellular automata: the case of Tehran. Int J Image Data Fusion 2:329–345

    Article  Google Scholar 

  • Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275

    Article  Google Scholar 

  • Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18(4):699–709

    Article  Google Scholar 

  • Barredo JI, Kasanko M, McCormick N, Lavalle C (2003) Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landsc Urban Plan 64:145–160

    Article  Google Scholar 

  • Basharin GP, Langville AN, Naumov VA (2004) The life and work of A.A. Markov. Linear Algebra Appl 386:3–26

    Article  Google Scholar 

  • Bhatta B (2010) Analysis of urban growth and sprawl from remote sensing data. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Bonan GB (2008) Ecological climatology—concepts and applications, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bozkaya AG, Balcik FB, Goksel C, Esbah H (2015) Forecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkey. Environ Monit Assess 187:59

    Article  Google Scholar 

  • Brown DG, Pijanowski BC, Duh JD (2000) Modelling the relationships between land use and land cover on private lands in the Upper Midwest, USA. J Environ Manag 59:247–263

    Article  Google Scholar 

  • Carlson TN, Azofeifa SGA (1999) Satellite remote sensing of land use changes in and around San José, Costa Rica. Remote Sens Environ 70:247–256

    Article  Google Scholar 

  • Clarke KC, Hoppen S (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B Plann Des 24:247–261

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. CRC/Lewis, Boca Raton

    Google Scholar 

  • Dadhich PN, Hanaoka S (2011) Spatio-temporal urban growth modeling of Jaipur, India. J Urban Technol 18:45–65

    Article  Google Scholar 

  • Dickinson RE (1995) Land processes in climate models. Remote Sens Environ 51:27–38

    Article  Google Scholar 

  • Dwivedi RS, Sreenivas K, Ramana KV (2005) Land-use/land-cover change analysis in part of Ethiopia using Landsat Thematic Mapper data. Int J Remote Sens 26(7):1285–1287

    Article  Google Scholar 

  • Eastman JR (2006) IDRISI Andes tutorial. Clark Labs, Worcester

    Google Scholar 

  • Eastman JR (2009) IDRISI Taiga guide to GIS and image processing; manual version 16.02. Clark Labs, Worcester

    Google Scholar 

  • Eastman JR (2012) IDRISI Selva Tutorial. Clark University, Worcester

    Google Scholar 

  • Eastman JR, Jiang H, Toledano J (1998) Multi-criteria and multi-objective decision making for land allocation using GIS. In: Beinat E, Nijkamp P (eds) Multicriteria analysis for land use management. Springer, Dordrecht, pp 227–251

    Chapter  Google Scholar 

  • Fathizad H, Rostami N, Faramarzi M (2015) Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environ Monit Assess 187:629

    Article  Google Scholar 

  • Fortin MJ, Boots B, Csillag F, Remmel TK (2003) On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos 102:203–212

    Article  Google Scholar 

  • Giriraj A, Irfan-Ullah M, Murthy MSR, Beierkuhnlein C (2008) Modelling spatial and temporal forest cover change patterns (1973-2020): a case study from South Western Ghats (India). Sensors 8:6132–6153

    Article  Google Scholar 

  • Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011) Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222:3761–3772

    Article  Google Scholar 

  • Hu X, Weng Q (2009) Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens Environ 113:2089–2102

    Article  Google Scholar 

  • Hua L, Tang L, Cui S, Yin K (2014) Simulating urban growth using the SLEUTH model in a coastal peri-urban district in China. Sustainability 6:3899–3914

    Article  Google Scholar 

  • Jantz CA, Goetz SJ, Shelley MK (2003) Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore–Washington metropolitan area. Environ Plann B Plann Des 30:251–271

    Google Scholar 

  • Ji CY (2000) Land-use classification of remotely sensed data using Kohonen self organizing feature map neural networks. Photogramm Eng Remote Sens 66:1451–1460

    Google Scholar 

  • Kamusoko C, Aniya M, Adi B, Manjoro M (2009) Rural sustainability under threat in Zimbabwe-simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl Geogr 29:435–447

    Article  Google Scholar 

  • Kilic S (2006) Environmental monitoring of land use and land cover changes in a Mediterranean region of Turkey. Environ Monit Assess 114(1–3):157–168

    Article  Google Scholar 

  • Kumar R, Nandy S, Agarwal R, Kushwaha SPS (2014) Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecol Indic 45:444–455

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11(4):261–269

    Article  Google Scholar 

  • Maithani S (2015) Neural networks-based simulation of land cover scenarios in Doon Valley, India. Geocarto Int 30:163–185

    Google Scholar 

  • Mas JF, Flores JJ (2008) The application of artificial neural networks to the analysis of remotely sensed data. Int J Remote Sens 29:617–663

    Article  Google Scholar 

  • Mas JF, Kolb M, Paegelow M, Olmedo MTC, Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Model Softw 51:94–111

    Article  Google Scholar 

  • Mas JF, Velazquez A, Gallegos JRD, Saucedo RM, Alcantare C, Bocco G, Castro R, Fernandez T, Vega AP (2004) Assessing land use/cover changes: a nationwide multi date spatial database for Mexico. Int J Appl Earth Obs Geoinf 5:249–261

    Article  Google Scholar 

  • Miller AB, Bryant ES, Birnie RW (1998) An analysis of land cover changes in the northern forest of New England using multi-temporal LANDSAT MSS data. Int J Remote Sens 19(2):245–265

    Article  Google Scholar 

  • Mishra VN, Prasad R, Kumar P, Gupta DK, Srivastava PK (2017) Dual-polarimetric C-band SAR data for land use/land cover classification by incorporating textural information. Environ Earth Sci 76(1):26

    Article  Google Scholar 

  • Mishra VN, Rai PK (2016) A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab J Geosci 9(4):1–18

    Article  Google Scholar 

  • Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst Jovan Cvijic 64:111–127

    Article  Google Scholar 

  • Mitsova D, Shuster W, Wang X (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99(2):141–153

    Article  Google Scholar 

  • Moghadam HS, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149

    Article  Google Scholar 

  • Mozumder C, Tripathi NK (2014) Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland Deepor Beel in Northeast India using a multi-layer perceptron neural network. Int J Appl Earth Observ Geoinf 32:92–104

    Article  Google Scholar 

  • Mozumder C, Tripathi NK, Losiri C (2016) Comparing three transition potential models: a case study of built-up transitions in North-East India. Comput Environ Urban Syst 59:38–49

    Article  Google Scholar 

  • Muller R, Middleton J (1994) A Markov model of land-use change dynamics in the Niagara region, Ontario, Canada. Landsc Ecol 9:151–157

    Google Scholar 

  • Olmedo MTC, Paegelow M, Mas JF (2013) Interest in intermediate soft-classified maps in land change model validation: suitability versus transition potential. Int J Geogr Inf Sci 27:2343–2361

    Article  Google Scholar 

  • Paudel S, Yuan F (2012) Assessing landscape changes and dynamics using patch analysis and GIS modeling. Int J Appl Earth Observ Geoinf 16:66–76

    Article  Google Scholar 

  • Pijanowski BC, Pithadia S, Shellito BA, Alexandridis K (2005) Calibrating a neural network based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int J Geogr Inf Sci 19:197–215

    Article  Google Scholar 

  • Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66:1011–1016

    Google Scholar 

  • Prenzel B (2004) Remote sensing-based quantification of land-cover and land-use change for planning. Prog Plan 61:281–299

    Article  Google Scholar 

  • Seto KC, Woodcock CE, Song C, Huang X, Lu J, Kaufmann RK (2002) Monitoring land use change in the Pearl River Delta using Landsat TM. Int J Remote Sens 23(10):1985–2004

    Article  Google Scholar 

  • Tang J, Wang L, Yao Z (2007) Spatio-temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. Int J Remote Sens 28(15):3255–3271

    Article  Google Scholar 

  • Thapa RB, Murayama Y (2012) Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc Urban Plan 105:140–148

    Article  Google Scholar 

  • Thies B, Meyer H, Nauss T, Bendix J (2014) Projecting land use and land-cover changes in a tropical mountain forest of Southern Ecuador. J Land Use Sci 9(1):1–33

    Article  Google Scholar 

  • Triantakonstantis D, Mountrakis G (2012) Urban growth prediction: a review of computational models and human perceptions. J Geogr Inf Syst 4:555–587

    Google Scholar 

  • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  Google Scholar 

  • Veldkamp A, Fresco LO (1996) CLUE: a conceptual model to study the conversion of land use and its effects. Ecol Model 85:253–270

    Article  Google Scholar 

  • Verburg PH, de Nijs TCM, RitsemavanEck J, Visser H, de Jong K (2004) Method to analyseneighbourhood characteristics of land use patterns. Comput Environ Urban Syst 28:667–690

    Article  Google Scholar 

  • Wang SQ, Zheng XQ, Zang XB (2012) Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environ Sci 13:1238–1245

    Article  Google Scholar 

  • Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag 64:273–284

    Article  Google Scholar 

  • Zhu Z, Liu L, Chen Z, Zhang J, Verburg PH (2010) Land-use change simulation and assessment of driving factors in the loess hilly region—a case study as Pengyang County. Environ Monit Assess 164:133–142

    Article  Google Scholar 

  • Zhu Z, Woodcock CE (2014) Continuous change detection and classification of land cover using all available Landsat data. Remote Sens Environ 144:152–171

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the United States Geological Survey (USGS) for the free access to Landsat data used in the present study. The authors are also grateful to the anonymous reviewers for their valuable comments which helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Narayan Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V.N., Rai, P.K., Prasad, R. et al. Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: a comparison of hybrid models. Appl Geomat 10, 257–276 (2018). https://doi.org/10.1007/s12518-018-0223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-018-0223-5

Keywords

Navigation