Skip to main content

Advertisement

Log in

A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Land use and land cover (LULC) changes are recognized as one of the most significant driver of environmental changes, mainly due to rapid urbanization. In this paper, an attempt has been made to appraise the ability of multi-layer perceptron-Markov chain analysis (MLP-MCA) integrated method to monitor and predict the future LULC change scenarios in Patna district, Bihar using remote sensing images. A supervised maximum likelihood classification method was applied to derive LULC maps from 1988, 2001, and 2013 Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) images, respectively. The LULC maps of 1988 and 2001 were employed to predict the LULC scenario for 2013 using MLP-MCA method. The predicted result was compared with the observed LULC map of 2013 to validate the method using kappa index statistics. Finally, based on the results, the future LULC change prediction for 2038 and 2050 was performed. The outcomes of this study reveal the rapid growth in ​built up area results in continuous decrease in agricultural lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed B, Ahmed R (2012) Modeling urban land cover growth dynamics using multi-temporal satellite images: a case study of dhaka, Bangladesh. ISPRS Int J GeoInf 1:3–31

    Article  Google Scholar 

  • Al-shalabi M, Billa L, Pradhan B, Mansor S, Al-Sharif AAA (2012) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci: 1–13

  • Al-sharif AA, Pradhan B (2014a) Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J Indian Soc Remote Sens 42:149–163

    Article  Google Scholar 

  • Al-Sharif AA, Pradhan B (2014b) Monitoring and predicting land use change in Tripoli metropolitan city using an integrated markov chain and cellular automata models in GIS. Arab J Geosci 7:4291–4301

    Article  Google Scholar 

  • Al-Sharif AA, Pradhan B (2015) A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto Int. doi:10.1080/10106049.2014.997308

    Google Scholar 

  • Araya YH, Cabral P (2010) Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sens 2:1549–1563

    Article  Google Scholar 

  • Arora MK, Das Gupta AS, Gupta RP (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 25:559–572

    Article  Google Scholar 

  • Arsanjani JJ, KainzW MAJ (2011) Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. Int J Image Data Fusion 2:329–345

    Article  Google Scholar 

  • Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275

    Article  Google Scholar 

  • Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18(4):699–709

    Article  Google Scholar 

  • Balzter H (2000) Markov chain models for vegetation dynamics. Ecol Model 126:139–154

    Article  Google Scholar 

  • Basse RM, Omrani H, Charif O, Gerber P, Bodis K (2014) Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geogr 5:160–171

    Article  Google Scholar 

  • Bonan GB (2008) Ecological climatology—concepts and applications (2nd edition). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, Van Strien A, Scharlemann JPM, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernández Morcillo M, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  Google Scholar 

  • Chan JC-W, Chan K-P, Yeh AG-O (2001) Detecting the nature of change in an urban environment: a comparison of machine learning algorithms. PhotogrammEng Remote Sens 67(2):213–225

    Google Scholar 

  • Civco DL (1993) Artificial neural networks for land-cover classification and mapping. Int J Geogr Inf Syst 7(2):173–186

    Article  Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B Plann Des 24:247–261

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scale. EducPsychol Meas 20:37–46

    Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. CRC/Lewis Press, Boca Raton

    Google Scholar 

  • Coppedge BR, Engle DM, Fuhlendorf SD (2007) Markov models of land cover dynamics in a southern Great Plains grassland region. Landscape Ecol 22:1383–1393

    Article  Google Scholar 

  • Dadhich PN, Hanaoka S (2010) Markov method integration with multi-layer perceptron classifier for simulation of urban growth of Jaipur city. Selected topics in power systems and remote sensing, 10th WSEAS/IASME international conference on electric power systems, high voltages, electric machines (power‘10) and 6th Wseas international conference on remote sensing (remote ‘10), Iwate Prefectural University, Japan, October 4–6, 2010, pp 118–123

  • Dadhich PN, Hanaoka S (2011) Spatio-temporal urban growth modeling of Jaipur, India. J Urban Technol 18:45–65

    Article  Google Scholar 

  • Dhinwa PS, Pathan SK, Sastry SVC, Rao M, Majumder KL, Chotani ML, Singh JP, Sinha RLP (1992) Land use change analysis of Bharatpur district using GIS. J Indian Soc Remote Sens 20(4):237–250

    Article  Google Scholar 

  • Di Gregorio A, Jansen LJM (2005) Land cover classification system: LCCS: classification concepts and user manual. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Eastman JR (2006) IDRISI Andes Tutorial. Clark Labs, Worcester, MA

    Google Scholar 

  • Eastman JR (2009) IDRISI Taiga Guide to GIS and Image Processing; Manual Version 16.02; Clark Labs: Worcester, MA, USA

  • Eastman JR (2012) IDRISI Selva Tutorial. Clark University, Worcester, MA, USA

    Google Scholar 

  • Geneletti D (2012) Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environ Impact Assess Rev 40:25–35

    Article  Google Scholar 

  • Ghosh S, Sen KK, Rana U, Rao KS, Saxena KG (1996) Application of GIS for land use/land-cover change analysis in a mountainous terrain. J Indian Soc Remote Sens 24(3):193–202

    Article  Google Scholar 

  • Gontier M, Mortberg U, Balfors B (2009) Comparing GIS-based habitat models for applications in EIA and SEA. Environ Impact Assess Rev 30(1):8–18

    Article  Google Scholar 

  • Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011) Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222:3761–3772

    Article  Google Scholar 

  • Hu Z, Lo C (2007) Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban Syst 31:667–688

    Article  Google Scholar 

  • Hua L, Tang L, Cui S, Yin K (2014) Simulating urban growth using the SLEUTH model in a coastal peri-urban district in China. Sustainability 6:3899–3914

    Article  Google Scholar 

  • Jantz CA, Goetz SJ, Shelley MK (2004) Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environ Plann B- Plann Des 31(2):251–271

    Article  Google Scholar 

  • Kamusoko C, Aniya M, Adi B, Manjoro M (2009) Rural sustainability under threat in Zimbabwe—simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl Geogr 29:435–447

    Article  Google Scholar 

  • Kilic S (2006) Environmental monitoring of land use and land cover changes in a Mediterranean region of turkey. Environ Monit Assess 114(1–3):157–168

    Article  Google Scholar 

  • Koi DD, Murayama Y (2010) Forecasting areas vulnerable to forest conversion in the Tam Dao National Park Region, Vietnam. Remote Sens 2:1249–1272

    Article  Google Scholar 

  • Li X, Yeh AGO (2002) Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16:323–343

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (1999) Remote sensing and image interpretation. John Wiley & Sons, New York, USA

    Google Scholar 

  • Maithani S (2015) Neural networks-based simulation of land cover scenarios in Doon valley, India. Geocarto Int 30:163–185

    Google Scholar 

  • Maithani S, Arora MK, Jain RK (2010) An artificial neural network based approach for urban growth zonation in Dehradun city, India. Geocarto Int 25:663–681

    Article  Google Scholar 

  • Mas JF, Flores JJ (2008) The application of artificial neural networks to the analysis of remotely sensed data. Int J Remote Sens 29:617–663

    Article  Google Scholar 

  • Mas J-F, Kolb M, Paegelow M, Olmedo MTC, Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Model Softw 51:94–111

    Article  Google Scholar 

  • Meyer WB, Turner BL (1992) Human population growth and global land-use/cover change. Annu Rev Ecol Syst 23:39–61

    Article  Google Scholar 

  • Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J GeogrInst Jovan Cvijic 64:111–127

    Article  Google Scholar 

  • Mitsova D, Shuster W, Wang X (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99:141–153

    Article  Google Scholar 

  • Mitsuda Y, Ito S (2010) A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landsc Ecol Eng 7(1):117–125

    Article  Google Scholar 

  • Mozumder C, Tripathi NK (2014) Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland Deepor Beel in Northeast India using a multi-layer perceptron neural network. Int J Appl Earth Observ Geoinf 32:92–104

    Article  Google Scholar 

  • Muller MR, Middleton J (1994) A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecol 9:151–157

    Google Scholar 

  • Ozturk D (2015) Urban growth simulation of atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-markov chain models. Remote Sens 7:5918–5950

    Article  Google Scholar 

  • Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26:553–575

    Article  Google Scholar 

  • Pijanowski BC, Pithadia S, Shellito BA, Alexandridis K (2005) Calibrating a neural network based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int J Geogr Inf Sci 19:197–215

    Article  Google Scholar 

  • Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66:1011–1016

    Google Scholar 

  • Raju K, Kumar RA (2006) Land use changes in Udumbanchola taluk, Idukki district-Kerala: an analysis with the application of remote sensing data. J Indian Soc Remote Sens 34(2):161–169

    Article  Google Scholar 

  • Ramankutty N, Foley JA, Olejniczak NJ (2002) People on the land: changes in population and global croplands during the 20th century. Ambio 31(3):251–257

    Article  Google Scholar 

  • Roberts DA, Batista GT, Pereira JLG, Waller EK, Nelson BW (1998) Change identification using multitemporal spectral mixture analysis: applications in eastern Amazonia. In Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Edited by R.S. Lunetta and C.D. Elvidge, Ann Arbor Press, Ann Arbor, Mich, pp 137–161

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation, In parallel distributed processing: explorations in the microstructure of cognition, Vol. 1, (Edited by D.E. Rumelhart and J.L. McClelland), MIT Press, Cambridge, MA, 318–362.

  • Sadidy J, Firouzabadi PZ, Entezari A (2009). The use of Radarsat and Landsat Image Fusion Algorithms and Different Supervised Classification Methods to Use Map Accuracy-Case Study: Sari Plain-Iran. http://www.isprs.org/proceedings/XXXVI/5-C55/papers/sadidy_javad.pdf

  • Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math Comput Model 54:938–943

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, De la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, ThuillerW TG, Zaehle S, Zierl B (2010) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  Google Scholar 

  • Sellers PJ, Meeson BW, Hall FG, Asrar G, Murphy RE, Schiffer RA, Bretherton FP, Dickinson RE, Ellingson RG, Field CB, Huemmric KF, Justice CO, Melack JM, Roulet NT, Schime DS, Try PD (1995) Remote sensing of the land surface for studies of global change: models—algorithms—experiments. Remote Sens Environ 51(1):3–26

    Article  Google Scholar 

  • Sheeja RV, Joseph S, Jaya DS, Baiju RS (2011) Land use and land cover changes over a century (1914–2007) in the Neyyar River Basin, Kerala: a remote sensing and GIS approach. Int J Digit Earth 4(3):258–270

    Article  Google Scholar 

  • Triantakonstantis D, Mountrakis G (2012) Urban growth prediction: a review of computational models and human perceptions. J Geogr Inf Syst 4:555–587

    Google Scholar 

  • Turner BL, Skole D, Sanderson S, Fischer G, Fresco L, Leemans R (1995) Land-use and land-cover change—science/research plan, IGBP Report No.35, HDP Report No. 07, Stockholm and Geneva

  • Václavík T, Rogan J (2009) Identifying trends in land use/land cover changes in the context of post-socialist transformation in central Europe: a case study of the greater Olomouc region, Czech Republic. GISci Remote Sens 46(1):54–76

    Article  Google Scholar 

  • Veldkamp A, Fresco LO (1996) CLUE: a conceptual model to study the conversion of land use and its effects. Ecol Model 85:253–270

    Article  Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SS (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag 30:391–405

    Article  Google Scholar 

  • Wakode HB, Baier K, Jha R, Azzam R (2013) Analysis of urban growth using Landsat TM/ETM data and GIS—a case study of Hyderabad. India Arab J Geosci 1–13

  • Wang SQ, Zheng XQ, Zang XB (2012) Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environ Sc 13:1238–1245

    Article  Google Scholar 

  • Yang X, Zheng X-Q, Lv L-N (2012) A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol Model 233:11–19

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Tarabees E (2011) Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from the analytic hierarchy process. Arab J Geosci 4:463–473

    Article  Google Scholar 

  • Yuan F (2010) Urban growth monitoring and projection using remote sensing and geographic information systems: a case study in the Twin Cities Metropolitan Area, Minnesota. Geocarto Int 25:213–230

    Article  Google Scholar 

  • Zhang Q, Ban Y, Liu J, Hu Y (2011) Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Comput Environ Urban Syst 35:126–139

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the evaluation version of IDRISI software obtained from Clarke’s Lab. The authors also would like to thank the anonymous reviewers and editors for their valuable comments and suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V.N., Rai, P.K. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab J Geosci 9, 249 (2016). https://doi.org/10.1007/s12517-015-2138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2138-3

Keywords

Navigation