Skip to main content

Advertisement

Log in

Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Antibiotics are the major pharmaceutical wastes that are being exposed to the environment from the pharmaceutical industries and for the anthropogenic activities. The use of antibiotics for disease prevention and treatment in humans has been surpassed by the amount used in agriculture, particularly on livestock. It is stipulated that the overuse of antibiotics is the single largest reason behind the rise of bacterial anti-microbial resistance (AMR). The development of alternative therapy, like gene therapy, immunotherapy, use of natural products, and various nanoparticles, to control bacterial pathogens might be an alternative of antibiotics for mankind but the remediation of already exposed antibiotics from the lithosphere and hydrosphere needs to be envisioned with priority. The ever-increasing release of antibiotics in the environment makes it one of the major emerging contaminants (ECs). Decomposition of such antibiotic contaminants is a great challenge to get a cleaner environment. There are reports describing the degradation of antibiotics by photolysis, hydrolysis, using cathode and metal salts, or by degradation via microbes. Antimicrobials like sulfonamides are recalcitrant to natural biodegradation, exhibiting high thermal stability. There are recent reports on microbial degradation of a few common antibiotics and their derivatives but their applications in waste management are scanty. It could however be a major concern to the scientists whether to use the antibiotic degradation traits of a microbe for the removal of antibiotic wastes. The complexity of the genetic clusters of a microbe that are responsible for degradation is crucial, as a small genetic cluster might have higher chance of horizontal transfer into sensitive species of the normal microbial flora that in turn triggers the rise of antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

The manuscript does not have associated data and materials.

Abbreviations

ARGs:

Antibiotic resistant genes

SM2:

Sulfamethazine

SD:

Sulfadiazine

SMX:

Sulfamethoxazole

CIP:

Ciprofloxacin

GEN:

Gentamicin

NOR:

Norfloxacin

OFX:

Ofloxacin

WWTPs:

Wastewater treatment plants

References

  • Adelowo, O. O., Ojo, F. A., & Fagade, O. E. (2009). Prevalence of multiple antibiotic resistance among bacterial isolates from selected poultry waste dumps in Southwestern Nigeria. World Journal of Microbiology and Biotechnology, 25(4), 713–719.

    Article  CAS  Google Scholar 

  • Adjei, M. D., Heinze, T. M., Deck, J., Freeman, J. P., Williams, A. J., & Sutherland, J. B. (2006). Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Applied and Environmental Microbiology, 72(9), 5790–5793.

    Article  CAS  Google Scholar 

  • Adjei, M. D., Heinze, T. M., Deck, J., Freeman, J. P., Williams, A. J., & Sutherland, J. B. (2007). Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Canadian Journal of Microbiology, 53(1), 144–147.

    Article  CAS  Google Scholar 

  • Amorim, C. L., Moreira, I. S., Maia, A. S., Tiritan, M. E., & Castro, P. M. (2014). Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11. Applied Microbiology and Biotechnology, 98(7), 3181–3190.

    Article  CAS  Google Scholar 

  • Bendz, D., Paxéus, N. A., Ginn, T. R., & Loge, F. J. (2005). Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. Journal of Hazardous Materials, 122(3), 195–204.

    Article  CAS  Google Scholar 

  • Blair, B., Nikolaus, A., Hedman, C., Klaper, R., & Grundl, T. (2015). Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere, 134, 395–401.

    Article  CAS  Google Scholar 

  • Brown, S. A. (1996). Fluoroquinolones in animal health. Journal of Veterinary Pharmacology and Therapeutics, 19(1), 1–14.

    Article  CAS  Google Scholar 

  • Burke, V., Greskowiak, J., Asmuß, T., Bremermann, R., Taute, T., & Massmann, G. (2014). Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone. Science of the Total Environment, 48, 53–61.

    Article  CAS  Google Scholar 

  • Doretto, K. M., Peruchi, L. M., & Rath, S. (2014). Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Science of the Total Environment, 476, 406–414.

    Article  CAS  Google Scholar 

  • Eibes, G., Debernardi, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2011). Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 22(3), 539–550.

    Article  CAS  Google Scholar 

  • García-Galán, M. J., Díaz-Cruz, M. S., & Barceló, D. (2008). Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trends in Analytical Chemistry, 27(11), 1008–1022.

    Article  CAS  Google Scholar 

  • Girardi, C., Greve, J., Lamshöft, M., Fetzer, I., Miltner, A., Schäffer, A., & Kästner, M. (2011). Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. Journal of Hazardous Materials, 198, 22–30.

    Article  CAS  Google Scholar 

  • Göbel, A., McArdell, C. S., Joss, A., Siegrist, H., & Giger, W. (2007). Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of the Total Environment, 372(2–3), 361–371.

    Article  CAS  Google Scholar 

  • Gros, M., Cruz-Morato, C., Marco-Urrea, E., Longrée, P., Singer, H., Sarrà, M., Hollender, J., Vicent, T., Rodriguez-Mozaz, S., & Barceló, D. (2014). Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Research, 60, 228–241.

    Article  CAS  Google Scholar 

  • Grote, M., Vockel, A., Schwarze, D., Mehlich, A., & Freitag, M. (2004). Fate of antibiotics in food chain and environment originating from pigfattening (Part 1). Fresenius Environmental Bulletin, 13(11), 1216–1224.

    CAS  Google Scholar 

  • Hong, X., Zhao, Y., Zhuang, R., Liu, J., Guo, G., Chen, J., & Yao, Y. (2020). Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RSC Advances, 10(55), 33086–33102.

    Article  CAS  Google Scholar 

  • Ingerslev, F., & Halling-Sørensen, B. (2000). Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry: An International Journal, 19(10), 2467–2473.

    Article  CAS  Google Scholar 

  • Islas-Espinoza, M., Reid, B. J., Wexler, M., & Bond, P. L. (2012). Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure. Microbial Ecology, 64(1), 140–151.

    Article  CAS  Google Scholar 

  • Janecko, N., Pokludova, L., Blahova, J., Svobodova, Z., & Literak, I. (2016). Implications of fluoroquinolone contamination for the aquatic environment—A review. Environmental Toxicology and Chemistry, 35(11), 2647–2656.

    Article  CAS  Google Scholar 

  • Jia, Y., Khanal, S. K., Zhang, H., Chen, G. H., & Lu, H. (2017). Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system. Water Research, 119, 12–20.

    Article  CAS  Google Scholar 

  • Jia, Y., Khanal, S. K., Shu, H., Zhang, H., Chen, G. H., & Lu, H. (2018). Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. Water Research, 136, 64–74.

    Article  CAS  Google Scholar 

  • Jiang, B., Li, A., Cui, D., Cai, R., Ma, F., & Wang, Y. (2014). Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Applied Microbiology and Biotechnology, 98(10), 4671–4681.

    Article  CAS  Google Scholar 

  • Kassotaki, E., Buttiglieri, G., Ferrando-Climent, L., Rodriguez-Roda, I., & Pijuan, M. (2016). Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. Water Research, 94, 111–119.

    Article  CAS  Google Scholar 

  • Kim, D. W., Heinze, T. M., Kim, B. S., Schnackenberg, L. K., Woodling, K. A., & Sutherland, J. B. (2011). Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant. Applied and Environmental Microbiology, 77(17), 6100–6108.

  • Kim, E. J., Jeon, J. R., Kim, Y. M., Murugesan, K., & Chang, Y. S. (2010). Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans. Applied Microbiology and Biotechnology, 87(4), 1569–1577.

    Article  CAS  Google Scholar 

  • Kim, S., Eichhorn, P., Jensen, J. N., Weber, A. S., & Aga, D. S. (2005). Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environmental Science & Technology, 39(15), 5816–5823.

    Article  CAS  Google Scholar 

  • Kim, Y., Arp, D. J., & Semprini, L. (2002). A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients for aerobic cometabolism of 1,1,1- trichloroethane by a butane-grown mixed culture. Biotechnology and Bioengineering, 77, 564–576.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.

    Article  CAS  Google Scholar 

  • Liao, X., Li, B., Zou, R., Dai, Y., Xie, S., & Yuan, B. (2016). Biodegradation of antibiotic ciprofloxacin: Pathways, influential factors, and bacterial community structure. Environmental Science and Pollution Research, 23(8), 7911–7918.

    Article  CAS  Google Scholar 

  • Liu, Y., Chang, H., Li, Z., Feng, Y., Cheng, D., & Xue, J. (2017). Biodegradation of gentamicin by bacterial consortia AMQD4 in synthetic medium and raw gentamicin sewage. Scientific Reports, 7(1), 1–11.

    CAS  Google Scholar 

  • Liu, Y., Fan, Q., & Wang, J. (2018). Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole. Journal of Hazardous Materials, 342, 166–176.

    Article  CAS  Google Scholar 

  • Liyanage, G. Y., & Manage, P. M. (2018). Removal of ciprofloxacin (CIP) by bacteria isolated from hospital effluent water and identification of degradation pathways. International Journal of Medical, Pharmacy and Drug Research, 2, 37–47.

    Article  Google Scholar 

  • Loftin, K. A., Adams, C. D., Meyer, M. T., & Surampalli, R. (2008). Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. Journal of Environmental Quality, 37(2), 378–386.

    Article  CAS  Google Scholar 

  • Lv, Y., Chen, X., Wang, L., Ju, K., Chen, X., Miao, R., & Wang, X. (2016). Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor. Frontiers of Environmental Science & Engineering, 10(2), 390–398.

    Article  CAS  Google Scholar 

  • Ma, J., Lin, H., Sun, W., Wang, Q., Yu, Q., Zhao, Y., & Fu, J. (2014). Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination. Environmental Science and Pollution Research, 21(12), 7436–7448.

    Article  CAS  Google Scholar 

  • Maia, A. S., Ribeiro, A. R., Amorim, C. L., Barreiro, J. C., Cass, Q. B., Castro, P. M., & Tiritan, M. E. (2014). Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1333, 87–98.

    Article  CAS  Google Scholar 

  • Martínez-Carballo, E., González-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148(2), 570–579.

    Article  CAS  Google Scholar 

  • Maul, J. D., Schuler, L. J., Belden, J. B., Whiles, M. R., & Lydy, M. J. (2006). Effects of the antibiotic ciprofloxacin on stream microbial communities and detritivorous macroinvertebrates. Environmental Toxicology and Chemistry: An International Journal, 25(6), 1598–1606.

    Article  CAS  Google Scholar 

  • Migliore, L., Fiori, M., Spadoni, A., & Galli, E. (2012). Biodegradation of oxytetracycline by Pleurotus ostreatus mycelium: A mycoremediation technique. Journal of Hazardous Materials, 215, 227–232.

    Article  CAS  Google Scholar 

  • Nguyen, L. N., Nghiem, L. D., & Oh, S. (2018). Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge. Chemosphere, 211, 600–607.

    Article  CAS  Google Scholar 

  • Nguyen, P. Y., Carvalho, G., Reis, A. C., Nunes, O. C., Reis, M. A. M., & Oehmen, A. (2017). Impact of biogenic substrates on sulfamethoxazole biodegradation kinetics by Achromobacter denitrificans strain PR1. Biodegradation, 28(2), 205–217.

    Article  CAS  Google Scholar 

  • Nzila, A. (2013). Update on the cometabolism of organic pollutants by bacteria. Environmental Pollution, 178, 474–482.

    Article  CAS  Google Scholar 

  • Pan, L. J., Li, J., Li, C. X., Yu, G. W., & Wang, Y. (2018). Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. Journal of Hazardous Materials, 343, 59–67.

    Article  CAS  Google Scholar 

  • Pan, L. J., Tang, X. D., Li, C. X., Yu, G. W., & Wang, Y. (2017). Biodegradation of sulfamethazine by an isolated thermophile–Geobacillus sp. S-07. World Journal of Microbiology and Biotechnology, 33(5), 1–8.

  • Parshikov, I. A., Freeman, J. P., Lay, J. O., Jr., Beger, R. D., Williams, A. J., & Sutherland, J. B. (2000). Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Applied and Environmental Microbiology, 66(6), 2664–2667.

    Article  CAS  Google Scholar 

  • Parshikov, I. A., Freeman, J. P., Lay, J. O., Jr., Moody, J. D., Williams, A. J., Beger, R. D., & Sutherland, J. B. (2001a). Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. Journal of Industrial Microbiology and Biotechnology, 26(3), 140–144.

    Article  CAS  Google Scholar 

  • Parshikov, I., Heinze, T., Moody, J., Freeman, J., Williams, A., & Sutherland, J. (2001b). The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Applied Microbiology and Biotechnology, 56(3), 474–477.

    Article  CAS  Google Scholar 

  • Peng, X., Wang, Z., Kuang, W., Tan, J., & Li, K. (2006). A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Science of the Total Environment, 371(1–3), 314–322.

    Article  CAS  Google Scholar 

  • Pérez, M., Torrades, F., Domènech, X., & Peral, J. (2002). Removal of organic contaminants in paper pulp effluents by AOPs: An economic study. Journal of Chemical Technology & Biotechnology, 77(5), 525–532.

    Article  CAS  Google Scholar 

  • Prieto, A., Möder, M., Rodil, R., Adrian, L., & Marco-Urrea, E. (2011). Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresource Technology, 102(23), 10987–10995.

    Article  CAS  Google Scholar 

  • Ramaswamy, J., Prasher, S. O., Patel, R. M., Hussain, S. A., & Barrington, S. F. (2010). The effect of composting on the degradation of a veterinary pharmaceutical. Bioresource Technology, 101(7), 2294–2299.

    Article  CAS  Google Scholar 

  • Ranjan, V. K., Mukherjee, S., Thakur, S., Gupta, K., & Chakraborty, R., (2019). Ampicillin-eating, carbapenem-resistant, super-superbug Pseudomonas sp. MR 02, isolated from an Indian River, Mahananada, has exhaustive repertoire of genes to combat all classes of antibiotics and catabolize β-lactams for its sustenance.

  • Reis, P. J., Reis, A. C., Ricken, B., Kolvenbach, B. A., Manaia, C. M., Corvini, P. F., & Nunes, O. C. (2014). Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials, 280, 741–749.

    Article  CAS  Google Scholar 

  • Ricken, B., Corvini, P. F., Cichocka, D., Parisi, M., Lenz, M., Wyss, D., Martínez-Lavanchy, P. M., Müller, J. A., Shahgaldian, P., Tulli, L. G., & Kohler, H. P. E. (2013). Ipso-hydroxylation and subsequent fragmentation: A novel microbial strategy to eliminate sulfonamide antibiotics. Applied and Environmental Microbiology, 79(18), 5550–5558.

    Article  CAS  Google Scholar 

  • Ricken, B., Kolvenbach, B. A., Bergesch, C., Benndorf, D., Kroll, K., Strnad, H., Vlček, Č., Adaixo, R., Hammes, F., Shahgaldian, P., & Schäffer, A. (2017). FMNH 2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Scientific Reports, 7(1), 1–11.

  • Selvi, A., Salam, J. A., & Das, N. (2014). Biodegradation of cefdinir by a novel yeast strain, Ustilago sp. SMN03 isolated from pharmaceutical wastewater. World Journal of Microbiology and Biotechnology, 30(11), 2839–2850.

  • Wang, H., Yao, H., Pei, J., Liu, F., & Li, D. (2016). Photodegradation of tetracycline antibiotics in aqueous solution by UV/ZnO. Desalination and Water Treatment, 57(42), 19981–19987.

    Article  CAS  Google Scholar 

  • Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620–640.

    Article  CAS  Google Scholar 

  • Wang, S., & Wang, J. (2017a). Comparative study on sulfamethoxazole degradation by Fenton and Fe (II)-activated persulfate process. RSC Advances, 7(77), 48670–48677.

    Article  CAS  Google Scholar 

  • Wang, S., & Wang, J. (2017b). Degradation of emerging contaminants by acclimated activated sludge. Environmental Technology, 39(15), 1985–1993.

    Article  CAS  Google Scholar 

  • Wang, J., & Wang, S. (2018a). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502–1517.

    Article  CAS  Google Scholar 

  • Wang, S., & Wang, J. (2018b). Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp. Applied Microbiology and Biotechnology, 102(1), 425–432.

    Article  CAS  Google Scholar 

  • Wang, S., Hu, Y., & Wang, J. (2018). Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. Journal of Environmental Management, 217, 240–246.

    Article  CAS  Google Scholar 

  • Wetzstein, H. G., Schneider, J., & Karl, W. (2012). Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic. AMB Express, 2(1), 1–7.

    Article  CAS  Google Scholar 

  • Yuan, F., Hu, C., Hu, X., Qu, J., & Yang, M. (2009). Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Research, 43(6), 1766–1774.

    Article  CAS  Google Scholar 

  • Zhang, K., Luo, Z., Zhang, T., Gao, N., & Ma, Y. (2015a). Degradation effect of sulfa antibiotics by potassium ferrate combined with ultrasound (Fe (VI)-US). BioMed Research International.

  • Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J. L. (2015b). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11), 6772–6782.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xu, J., Zhong, Z., Guo, C., Li, L., He, Y., Fan, W., & Chen, Y. (2013). Degradation of sulfonamides antibiotics in lake water and sediment. Environmental Science and Pollution Research, 20(4), 2372–2380.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Lin, S. S., Dai, C. M., Shi, L., & Zhou, X. F. (2014). Sorption–desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: Effect of soil type, dissolved organic matter, and pH. Environmental Science and Pollution Research, 21(9), 5827–5835.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Prithidipa Sahoo, Visva-Bharati University, for her generous help in proofreading the manuscript. AK is thankful to CSIR, Gov. of India, for her research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AK and SM conceptualize the research; AK performed data curation and wrote the original draft; SM supervised, reviewed, and edited the manuscript.

Corresponding author

Correspondence to Sukhendu Mandal.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Both the authors have agreed for the publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayal, A., Mandal, S. Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution. Environ Monit Assess 194, 639 (2022). https://doi.org/10.1007/s10661-022-10314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10314-2

Keywords

Navigation