Skip to main content

Advertisement

Log in

Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aerobic metabolism of monofluorophenols (mono-FPs) by the actinomycete, Pseudonocardia benzenivorans, was studied. This strain was able to grow on 4-fluorophenol (4-FP) and readily transform 2- and 3-fluorophenol to the corresponding metabolites. The detailed mechanism of mono-FPs degradation by P. benzenivorans was elucidated from enzymatic assays and the identification of reaction intermediates by high-performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry. Two types of fluorocatechols (i.e., 3- and 4-fluorocatechol) were identified as the key transformation products. During 4-FP degradation, only 4-fluorocatechol was detected, and a stoichiometric level of fluoride was released. Both fluorocatechols were observed together in cultures containing 3-fluorophenol (3-FP), while only 3-fluorocatechol was found to accumulate in 2-fluorophenol (2-FP)-containing cultures. Whole-cell extracts of P. benzenivorans expressed catechol 1,2-dioxygenase activity, indicating that the transformation of the three tested mono-FPs proceeded via ortho-cleavage pathway. The results presented in this paper provide comprehensive information regarding the metabolism of mono-FPs by a single bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2, 3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    CAS  Google Scholar 

  • Boesmna MG, Dinarieva TY, Middlehoven WJ, Van Berkel WJH, Doran J, Vervoort J, Rietjens IMCM (1998) 19F nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates. Appl Environ Microbiol 64:1256–1263

    Google Scholar 

  • Boersma MG, Solyanikova IP, Van Berkel WJH, Vervoort J, Golovleva L, Rietjens IMCM (2001) 19F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J Ind Microbiol Biotechnol 26:22–34

    Article  CAS  Google Scholar 

  • Bondar VS, Boersma MG, Golovlev EL, Vervoort J, Van Berkel WJH, Finkelstein ZI, Solyanikova IP, Golovleva LA, Rietjens IMCM (1998) 19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species. Biodegradation 9:475–486

    Article  CAS  Google Scholar 

  • Bondar VS, Boersma MG, Van Berkel WJH, Finkelstein ZI, Golovlev EL, Baskunov BP, Vervoort Golovleva LA, Rietjens IMCM (1999) Preferential oxidative dehalogenation upon conversion of 2-halophenols by Rhodococcus opacus 1G. FEMS Microbiol Lett 181:73–82

    Article  CAS  Google Scholar 

  • Broderick JB (1999) Catechol dioxygenases. Essays Biochem 34:173–189

    CAS  Google Scholar 

  • Buhler DR, Unlu F, Thakker DR, Slaqa TJ, Conney AH, Wood AW, Chang RL, Levin W, Jerina DM (1983) Effect of a 6-fluoro substituent on the metabolism and biological activity of benzo(a)pyrene. Cancer Res 43:1541–1549

    CAS  Google Scholar 

  • Carvalho MF, Alves CCT, Ferreira MIM, De Marco P, Castro PML (2002) Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl Environ Microbiol 68:102–105

    Article  CAS  Google Scholar 

  • Carvalho MF, Ferreira MIM, Moreira IS, Castro PML, Janssen DB (2006) Degradation of fluorobenzene by Rhizobiales strain F11 via ortho cleavage of 4-fluorocatechol and catechol. Appl Environ Microbiol 72:7413–7417

    Article  CAS  Google Scholar 

  • Chaojie Z, Qi Z, Ling C, Yuan Y, Hui Y (2007) Degradation of mono-fluorophenols by an acclimated activated sludge. Biodegradation 18:51–61

    Article  Google Scholar 

  • Dorn E, Knackmuss HJ (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1, 2 dioxygenation of catechol. Biochem J 174:85–94

    CAS  Google Scholar 

  • Engesser KH, Rubio MA, Ribbons DW (1988) Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 4-trifluoromethyl(TFM)-benzoate by 4-isopropylbenzoate grown Pseudomonas putida JT strains. Arch Microbiol 149:198–206

    Article  CAS  Google Scholar 

  • Ferreira MIM, Marchesi JR, Janssen DB (2008) Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Microbiol Biotechnol 78:709–717

    Article  CAS  Google Scholar 

  • Finkelstein ZI, Baskunov BP, Boersma MG, Vervoort J, Golovlev EL, Van Berkel WJH, Golovleva LA, Rietjens IMCM (2000) Identification of fluoropyrogallols as new intermediates in biotransformation of monofluorophenols in Rhodococcus opacus 1cp. Appl Environ Microbiol 66:2148–2153

    Article  CAS  Google Scholar 

  • Fortnagel P, Harms H, Wittich RM, Krohn S, Meyer H, Sinnwell V, Wilkes H, Francke W (1990) Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl Environ Microbiol 56:1148–1156

    CAS  Google Scholar 

  • Gibson DT (1968) Microbial degradation of aromatic compounds. Science 161:1093–1097

    Article  CAS  Google Scholar 

  • Gorlatov SN, Golovleva LA (1992) Effect of cosubstrates on the dechlorination of selected chlorophenolic compounds by Rhodococcus erythropolis 1CP. J Basic Microbol 32:177–184

    Article  CAS  Google Scholar 

  • Gurujeyalakshmi G, Oriel P (1989) Isolation of phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl Environ Microbiol 55:500–502

    CAS  Google Scholar 

  • Haggblom M (1990) Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J Basic Microbiol 30:115–141

    Article  CAS  Google Scholar 

  • Haggblom MM, Bossert ID (2003) Dehalogenation: microbial processes and environmental applications, 1st edn. Springer, New York, pp 19–32

    Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1994) Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2. J Basic Microbiol 34:163–172

    Article  CAS  Google Scholar 

  • Kampfer P, Kroppenstedt RM (2004) Pseudonocardia benzenivorans sp. nov. Int J Syst Evol Microbiol 54:749–751

    Article  Google Scholar 

  • Key BD, Howell RD, Criddle CS (1997) Fluorinated organics in the biosphere. Environ Sci Technol 31:2445–2454

    Article  CAS  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1, 4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ Sci Technol 40:5435–5442

    Article  CAS  Google Scholar 

  • Marr J, Kremer S, Sterner O, Anke H (1996) Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Biodegradation 7:165–171

    Article  CAS  Google Scholar 

  • Mars AE, Kasberg T, Kaschabek SR, Van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    CAS  Google Scholar 

  • Nozaki M (1970) Metapyrocatechase (Pseudomonas). Meth Enzymol 17A:522–525

    Article  Google Scholar 

  • Oltmanns RH, Muller R, Otto MK, Lingens F (1989) Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl Environ Microbiol 55:2499–2504

    CAS  Google Scholar 

  • Park BK, Kitteringham NR, O'Neill PM (2001) Metabolism of fluorine-containing drugs. Annu Rev Pharmacol Toxicol 41:443–470

    Article  CAS  Google Scholar 

  • Schreiber A, Hellwiq M, Dorn E, Reineke W, Knackmuss HJ (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39:58–67

    CAS  Google Scholar 

  • Thakker DR, Yagi H, Sayer JM (1984) Effects of a 6-fluoro substituent on the metabolism of benzo(a)pyrene 7, 8-dihydrodiol to bay-region diol epoxides by rat liver enzymes. J Biol Chem 259:11249–11256

    CAS  Google Scholar 

  • Van Pee KH, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312

    Article  Google Scholar 

  • Whalen MY, Armstrong SM, Patel TR (1993) Characterization of a Rhodococcus species that utilizes numerous aromatics. Soil Biol Biochem 25:759–762

    Article  CAS  Google Scholar 

  • Zaitsev GM, Surovtseva EG (2000) Growth of Rhodococcus opacus on mixtures of monohalogenated benzenes and phenols. Microbiology 69:401–405

    Article  CAS  Google Scholar 

  • Zaitsev GM, Uotila JS, Tsitko IV, Lobanok AG, Salkinoja-Salonen MS (1995) Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol 61:4191–4201

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST; No. R01-2008-000-20244-0) and “The GAIA project” from the Korea Ministry of Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Seok Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, EJ., Jeon, JR., Kim, YM. et al. Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans . Appl Microbiol Biotechnol 87, 1569–1577 (2010). https://doi.org/10.1007/s00253-010-2647-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2647-7

Keywords

Navigation