Skip to main content
Log in

Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sulfamethoxazole is a common antibiotic that is frequently detected in wastewater and surface water. This study investigated the biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a cold-adapted bacterium. Strain HA-4, which uses sulfamethoxazole as its sole source of carbon and energy, was isolated at a low temperature (10 °C) and identified as P. psychrophila by physico-biochemical characterization and 16S rRNA gene sequence analysis. Strain HA-4 removed sulfamethoxazole at temperatures ranging from 5.0 °C to 30 °C, with the maximal removal rate at 10 °C. The maximal removal rate of sulfamethoxazole by strain HA-4 was 34.30 % after 192 h at 10 °C. The highest percentage of unsaturated fatty acid was determined to be 23.03 % at 10 °C, which adheres to the characteristic for cold-adapted psychrophiles and psychrotrophs. At low concentrations of sulfamethoxazole, the growth kinetics correlated well with the Haldane model. The single-substrate parameter values of sulfamethoxazole on cell growth were determined to be μ max = 0.01 h−1, K s = 20.91 mg/l and K i = 170.60 mg/l. Additionally, the major intermediates from sulfamethoxazole biodegradation by strain HA-4, including aniline, 3-amino-5-methylisoxazole, 4-aminothiophenol and sulfanilamide, were identified by GC-MS and high-resolution mass spectrometry (HR-MS) analysis. The results demonstrate that strain HA-4 has the potential to degrade sulfamethoxazole at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahsan S, Kaneco S, Ohta K, Mizuno T, Kani K (2001) Use of some natural and waste materials for waste water treatment. Water Res 35(15):3738–3742

    Article  CAS  PubMed  Google Scholar 

  • Akhtar J, Amin NS, Aris A (2011) Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using Fe2O3/CeO2 loaded activated carbon. Chem Eng J 170:136–144

    Article  CAS  Google Scholar 

  • Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V (2006) Kinetics of high strength phenol degradation using Bacillus brevis. J Hazard Mater 129(1–3):216–222

    Article  CAS  PubMed  Google Scholar 

  • Autschul SF, Gish W, Miller W, Myers EM, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  • Banerjee I, Modak JM, Bandopadhyay K, Das D, Maiti BR (2001) Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida. J Biotechnol 87(3):211–223

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Mol Cell Biol 50(5):631–642

    CAS  Google Scholar 

  • Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Claußen M, Schmidt S (1998) Biodegradation of phenol and p-cresol by the hyphomycete Scedosporium apiospermum. Res Microbiol 149:399–406

    Article  PubMed  Google Scholar 

  • Dantas RF, Contreras S, Sans C, Esplugas S (2008) Sulfamethoxazole abatement by means of ozonation. J Hazard Mater 150(3):790–794

    Article  CAS  PubMed  Google Scholar 

  • Dirany A, Aaron SE, Oturan N, Sirés I, Oturan MA, Aaron JJ (2011) Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment [J]. Anal Bioanal Chem 400(2):353–360

    Article  CAS  PubMed  Google Scholar 

  • Drillia P, Dokianakis SN, Fountoulakis MS (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122(3):259–265

    Article  CAS  PubMed  Google Scholar 

  • Eibes G, Debernardi G, Feijoo G, Moreira M, Lema J (2011) Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation 22(3):539–550

    Article  CAS  PubMed  Google Scholar 

  • Garcıa-Galán MJ, Dıaz-Cruz MS, Barceló D (2009) Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. Trends Anal Chem 28(6):804–819

    Article  Google Scholar 

  • Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Total Environ 408(7):1701–1706

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18(3):103–107

    Article  CAS  PubMed  Google Scholar 

  • González O, Sans C, Esplugas S (2007) Sulfamethoxazole abatement by photo-Fenton: toxicity, inhibition and biodegradability assessment of intermediates. J Hazard Mater 146(3):459–464

    Article  PubMed  Google Scholar 

  • Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66(4):356–366

    Article  CAS  PubMed  Google Scholar 

  • Hajjouji H, Bailly JR, Winterton P, Merlina G, Revel JC, Hafidi M (2008) Chemical and spectroscopic analysis of olive mill waste water during a biological treatment. Bioresour Technol 99(11):4958–4965

    Article  PubMed  Google Scholar 

  • Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46(6):797–807

    Article  CAS  PubMed  Google Scholar 

  • Hébraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1(2):211–219

    PubMed  Google Scholar 

  • Jiang Y, Wen JP, Bai J, Jia XQ, Hu ZD (2007) Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. J Hazard Mater 147:672–676

    Article  CAS  PubMed  Google Scholar 

  • Joss A, Zabczynski S, Gobel A, Hoffmann B, Loffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40(8):1686–1696

    Article  CAS  PubMed  Google Scholar 

  • Kagle J, Porter AW, Murdoch RW, Rivera-Cancel G, Hay AG (2009) Biodegradation of pharmaceutical and personal care products. Adv Appl Microbiol 67:65–108

    Article  CAS  PubMed  Google Scholar 

  • Larcher S, Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91(1):211–218

    Article  CAS  PubMed  Google Scholar 

  • Li A, Qu YY, Zhou JT, Gou M (2009a) Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4. J Environ Sci 21(2):211–217

    Article  CAS  Google Scholar 

  • Li WW, Li XD, Zeng KM (2009b) Aerobic biodegradation kinetics of tannic acid in activated sludge system. Biochem Eng J 43(2):142–148

    Article  CAS  Google Scholar 

  • Li Y, Li J, Wang C, Wang PF (2010) Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresour Technol 101:6740–6744

    Article  CAS  PubMed  Google Scholar 

  • Liu WD, Lee CY (2007) Practical identification analysis of Haldane kinetic parameters describing phenol biodegradation in batch operations. J Environ Eng Manag 17(1):71–80

    Google Scholar 

  • Lon KC, Yu YG (2000) Kinetics of carbazole degradation by Pseudomonas putida in presence of sodium salicylate. Water Res 34(17):4131–4138

    Article  Google Scholar 

  • Michel H, Patrick P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1(2):211–219

    Google Scholar 

  • Mompelat S, LeBot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35(5):803–814

    Article  CAS  PubMed  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11(6):540–546

    Article  CAS  PubMed  Google Scholar 

  • Neilan BA (1995) Identification and phylogeneticanalysis of toxigenic cyanobacteria by multiplex randomly amplified polymorphic DNA PCR. Appl Environ Microbiol 61(6):2286–2291

    Google Scholar 

  • Nödler K, Licha T, Fischer S, Wagner B, Sauter M (2011) A case study on the correlation of micro-contaminants and potassium in the Leine River (Germany). Appl Geochem 26(12):2172–2180

    Article  Google Scholar 

  • Paxeus N (2004) Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Sci Technol 50(5):253–260

    CAS  PubMed  Google Scholar 

  • Ricken B, Corvini PF, Cichocka D, Parisi M, Lenz M, Wyss D, Martínez-Lavanchy PM, Müller JA, Shahgaldian P, Tulli LG, Kohler H-PE, Kolvenbach BA (2013) ipso-Hydroxylation and subsequent fragmentation: a novel microbial strategy to eliminate sulfonamide antibiotics. Appl Environ Microbiol 79(18):5550–5558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodayan A, Roy R, Yargeau V (2010) Oxidation products of sulfamethoxazole in ozonated secondary effluent. J Hazard Mater 177(1):237–243

    Google Scholar 

  • Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria—molecular adaptations of membrane lipids. Comp Biochem Physiol A 118:489–493

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008) Kinetics of phenol and m-cresol biodegradation by an indigenous mixed microbial culture isolated from a sewage treatment plant. J Environ Sci 20(12):1508–1513

    Article  CAS  Google Scholar 

  • Suárez S, Carballa M, Omil F, Lema J (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewater. Rev Environ Sci Bio/Technol 7(2):125–138

    Article  Google Scholar 

  • Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken R, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants: I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(102):81–90

    Article  CAS  PubMed  Google Scholar 

  • Wang LM, Li Y, Yu P, Xie ZX, Luo YB, Lin YW (2010) Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6. J Hazard Mater 183(1):366–371

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Bergamaschi BA, Loftin KA, Meyer MT, Harter T (2010) Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ Sci Technol 44(17):6591–6600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 407(8):2711–2723

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14(9):398–405

    Article  CAS  PubMed  Google Scholar 

  • Xu BJ, Mao DQ, Luo Y, Xu L (2011) Sulfamethoxazole biodegradation and biotransformation in the water–sediment system of a natural river. Bioresour Technol 102(14):7069–7076

    Article  CAS  PubMed  Google Scholar 

  • Yamazoe A, Yagi O, Oyaizu H (2004) Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Appl Microbiol Biotechnol 65(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Yargeau V, Huot JC, Rodayan A, Rouleau L, Roy R, Leask RL (2008) Impact of degradation products of sulfamethoxazole on mammalian cultured cells. Environ Toxicol 23:492–498

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Pan B, Zhang H, Ning P, Xing B (2010) Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environ Sci Technol 44(10):3806–3811

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (51108120 and 51178139), the National Creative Research Group of the National Natural Science Foundation of China (51121062), the 4th Special Financial Grant from the China Postdoctoral Science Foundation (201104430), and the 46th China Postdoctoral Science Foundation (20090460901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ang Li or Fang Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 608 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, B., Li, A., Cui, D. et al. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Appl Microbiol Biotechnol 98, 4671–4681 (2014). https://doi.org/10.1007/s00253-013-5488-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5488-3

Keywords

Navigation