Skip to main content

Advertisement

Log in

Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A. (2008). Characterization of surfactin produced by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology, 150, 289–303.

    Article  CAS  Google Scholar 

  • Atlas, R.M. (2004). Handbook of microbiological media. CRC press.

  • Atlas, R. M., & Bartha, R. (1997). Microbial ecology: fundamentals and applications (4th ed.). Menlo Park: Benjamin Cummings Publishing Company.

    Google Scholar 

  • Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Smyth, T. J., & Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, 427–444.

    Article  CAS  Google Scholar 

  • Becker, K. W., Canevari, G. P., Fiocco, R. J., & Lessard, R. R. (1997). Chemical dispersant for oil spills. Florham Park: Exxon Research and Engineering Company.

    Google Scholar 

  • Board, M. (1989). Using oil spill dispersants on the Sea. National Academies Press.

  • Bodour, A. A., & Miller-Maier, R. M. (1998). Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 32, 273–280.

    Article  CAS  Google Scholar 

  • Bodour, A. A., Drees, K. P., & Maier, R. M. (2003). Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Applied and Environmental Microbiology, 69, 3280–3287.

    Article  CAS  Google Scholar 

  • Bull, A. T., Ward, A. C., & Goodfellow, M. (2000). Search and discovery strategies for biotechnology: the paradigm shift. Microbiology and Molecular Biology Reviews, 64, 573–606.

    Article  CAS  Google Scholar 

  • Cai, Q., Zhang, B., Chen, B., Zhu, Z., Lin, W., & Cao, T. (2014). Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Marine Pollution Bulletin, 86, 402–410.

    Article  CAS  Google Scholar 

  • Christofi, N., & Ivshina, I. (2002). Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology, 93, 915–929.

    Article  CAS  Google Scholar 

  • Das, P., Mukherjee, S., Sivapathasekaran, C., Sen, R. (2010). Microbial surfactants of marine origin: potentials and prospects, Biosurfactants (p.^pp. 88–101). Springer.

  • de Sousa, T., & Bhosle, S. (2012). Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB. MJ10 isolated from a mangrove ecosystem. Bioresource Technology, 123, 256–262.

    Article  Google Scholar 

  • Fingas, M.F. (2011). Oil spill science and technology: prevention, response, and cleanup. Elsevier/Gulf Professional Publishing.

  • Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, T. J., & Banat, I. M. (2010). Production and applications of trehalose lipid biosurfactants. European Journal of Lipid Science and Technology, 112, 617–627.

    Article  CAS  Google Scholar 

  • Franzetti, A., Gandolfi, I., Raimondi, C., Bestetti, G., Banat, I. M., Smyth, T. J., Papacchini, M., Cavallo, M., & Fracchia, L. (2012). Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresource Technology, 108, 245–251.

    Article  CAS  Google Scholar 

  • Grabowski, A., Nercessian, O., Fayolle, F., Blanchet, D., & Jeanthon, C. (2005). Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiology Ecology, 54, 427–443.

    Article  CAS  Google Scholar 

  • Gudiña, E. J., Pereira, J. F., Rodrigues, L. R., Coutinho, J. A., & Teixeira, J. A. (2012). Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. International Biodeterioration & Biodegradation, 68, 56–64.

    Article  Google Scholar 

  • Gutiérrez, T., Mulloy, B., Bavington, C., Black, K., & Green, D. H. (2007). Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium Antarctobacter. Applied Microbiology and Biotechnology, 76, 1017–1026.

    Article  Google Scholar 

  • Haddad, N. I., Wang, J., & Mu, B. (2008). Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. Journal of Industrial Microbiology & Biotechnology, 35, 1597–1604.

    Article  CAS  Google Scholar 

  • Han, L., Parekh, S.R. (2005). Development of improved strains and optimization of fermentation processes, Microbial Processes and Products (p.^pp. 1–23). Springer.

  • Ivanova, E. P., Vysotskii, M. V., Svetashev, V. I., Nedashkovskaya, O. I., Gorshkova, N. M., Mikhailov, V. V., Yumoto, N., Shigeri, Y., Taguchi, T., & Yoshikawa, S. (2010). Characterization of Bacillus strains of marine origin. International Microbiology, 2, 267–271.

    Google Scholar 

  • Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2008). Biosurfactant production using molasses and whey under thermophilic conditions. Bioresource Technology, 99, 195–199.

    Article  CAS  Google Scholar 

  • Karimi, M., Mahmoodi, M., Niazi, A., Al-Wahaibi, Y., & Ayatollahi, S. (2012). Investigating wettability alteration during MEOR process, a micro/macro scale analysis. Colloids and Surfaces B: Biointerfaces, 95, 129–136.

    Article  CAS  Google Scholar 

  • Kaster, K. M., Hiorth, A., Kjeilen-Eilertsen, G., Boccadoro, K., Lohne, A., Berland, H., Stavland, A., & Brakstad, O. G. (2012). Mechanisms involved in microbially enhanced oil recovery. Transport in Porous Media, 91, 59–79.

    Article  CAS  Google Scholar 

  • Kiran, G. S., Sabarathnam, B., & Selvin, J. (2010a). Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunology and Medical Microbiology, 59, 432–438.

    CAS  Google Scholar 

  • Kiran, G. S., Thomas, T. A., Joseph, S., Sabarathnam, B., & Lipton, A. P. (2010b). Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresource Technology, 101, 2389–2396.

    Article  Google Scholar 

  • Kiran, G. S., Thomas, T. A., & Selvin, J. (2010c). Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids and Surfaces. B, Biointerfaces, 78, 8–16.

    Article  CAS  Google Scholar 

  • Kowalewski, E., Rueslåtten, I., Steen, K., Bødtker, G., & Torsæter, O. (2006). Microbial improved oil recovery—bacterial induced wettability and interfacial tension effects on oil production. Journal of Petroleum Science and Engineering, 52, 275–286.

    Article  CAS  Google Scholar 

  • Kumar, A. S., Mody, K., & Jha, B. (2007). Evaluation of biosurfactant/bioemulsifier production by a marine bacterium. Bulletin of Environmental Contamination and Toxicology, 79, 617–621.

    Article  CAS  Google Scholar 

  • Lazar, I., Petrisor, I., & Yen, T. (2007). Microbial enhanced oil recovery (MEOR). Petroleum Science and Technology, 25, 1353–1366.

    Article  CAS  Google Scholar 

  • Lotfabad, T. B., Shourian, M., Roostaazad, R., Najafabadi, A. R., Adelzadeh, M. R., & Noghabi, K. A. (2009). An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids and Surfaces. B, Biointerfaces, 69, 183–193.

    Article  CAS  Google Scholar 

  • Martínez-Checa, F., Toledo, F., El Mabrouki, K., Quesada, E., & Calvo, C. (2007). Characteristics of bioemulsifier V2-7 synthesized in culture media added of hydrocarbons: chemical composition, emulsifying activity and rheological properties. Bioresource Technology, 98, 3130–3135.

    Article  Google Scholar 

  • Mukherjee, S., Das, P., & Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology, 24, 509–515.

    Article  CAS  Google Scholar 

  • Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198.

    Article  CAS  Google Scholar 

  • Mulligan, C. N. (2009). Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science, 14, 372–378.

    Article  CAS  Google Scholar 

  • Nitschke, M., & Pastore, G. M. (2006). Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technology, 97, 336–341.

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Sciences, 12, 633–654.

    Article  Google Scholar 

  • Peng, F., Liu, Z., Wang, L., & Shao, Z. (2007). An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. Journal of Applied Microbiology, 102, 1603–1611.

    Article  CAS  Google Scholar 

  • Pruthi, V., & Cameotra, S. S. (2003). Effect of nutrients on optimal production of biosurfactants by Pseudomonas putida—a Gujarat oil field isolate. Journal of Surfactants and Detergents, 6, 65–68.

    Article  CAS  Google Scholar 

  • Qiao, N., & Shao, Z. (2010). Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. Journal of Applied Microbiology, 108, 1207–1216.

    Article  CAS  Google Scholar 

  • Saimmai, A., Sobhon, V., & Maneerat, S. (2012). Production of biosurfactant from a new and promising strain of Leucobacter komagatae 183. Annals of Microbiology, 62, 391–402.

    Article  CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  • Satpute, S. K., Banat, I. M., Dhakephalkar, P. K., Banpurkar, A. G., & Chopade, B. A. (2010). Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnology Advances, 28, 436–450.

    Article  CAS  Google Scholar 

  • Shavandi, M., Mohebali, G., Haddadi, A., Shakarami, H., & Nuhi, A. (2011). Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids and Surfaces B: Biointerfaces, 82, 477–482.

    Article  CAS  Google Scholar 

  • She, Y. H., Zhang, F., Xia, J. J., Kong, S. Q., Wang, Z. L., Shu, F. C., & Hu, J. M. (2011). Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding. Applied Biochemistry and Biotechnology, 163, 223–234.

    Article  CAS  Google Scholar 

  • Shinoda, K., Kunieda, H. (1983). Phase properties of emulsions: PIT and HLB, Encyclopedia of Emulsion Technology: Basic Theory (p.^pp. 337).

  • Sriram, M. I., Gayathiri, S., Gnanaselvi, U., Jenifer, P. S., Mohan Raj, S., & Gurunathan, S. (2011). Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresource Technology, 102, 9291–9295.

    Article  CAS  Google Scholar 

  • Transparency Market Research (2011). Biosurfactants market—global scenario, raw material and consumption trends, industry analysis, size, share and forecasts, 2011—2018., Albany NY, USA.

  • Tuleva, B., Christova, N., Cohen, R., Antonova, D., Todorov, T., & Stoineva, I. (2009). Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochemistry, 44, 135–141.

    Article  CAS  Google Scholar 

  • Urum, K., & Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57, 1139–1150.

    Article  CAS  Google Scholar 

  • Wang, J., Ji, G., Tian, J., Zhang, H., Dong, H., & Yu, L. (2011). Functional characterization of a biosurfactant-producing thermo-tolerant bacteria isolated from an oil reservoir. Petroleum Science, 8, 353–356.

    Article  CAS  Google Scholar 

  • Wu, Y., Lai, Q., Zhou, Z., Qiao, N., Liu, C., & Shao, Z. (2009). Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. International Journal of Systematic and Evolutionary Microbiology, 59, 1474–1479.

    Article  CAS  Google Scholar 

  • Xia, W., Luo, Z., Dong, H., & Yu, L. (2013). Studies of biosurfactant for microbial enhanced Oil recovery by using bacteria isolated from the formation water of a petroleum reservoir. Petroleum Science and Technology, 31, 2311–2317.

    Article  CAS  Google Scholar 

  • Yakimov, M. M., Timmis, K. N., Wray, V., & Fredrickson, H. L. (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Applied and Environmental Microbiology, 61, 1706–1713.

    CAS  Google Scholar 

  • Yakimov, M. M., Amro, M. M., Bock, M., Boseker, K., Fredrickson, H. L., Kessel, D. G., & Timmis, K. N. (1997). The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. Journal of Petroleum Science and Engineering, 18, 147–160.

    Article  CAS  Google Scholar 

  • Yang, K., Zhu, L., & Xing, B. (2006). Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology, 40, 4274–4280.

    Article  CAS  Google Scholar 

  • Zargari, S., Ostvar, S., Niazi, A., & Ayatollahi, S. (2010). Atomic force microscopy and wettability study of the alteration of mica and sandstone by a biosurfactant-producing bacterium Bacillus thermodenitrificans. Journal of Advanced Microscopy Research, 5, 143–148.

    Article  CAS  Google Scholar 

  • Zhao, B., Zhu, L., Li, W., & Chen, B. (2005). Solubilization and biodegradation of phenanthrene in mixed anionic–nonionic surfactant solutions. Chemosphere, 58, 33–40.

    Article  CAS  Google Scholar 

  • Zheng, C. G., He, J. L., Wang, Y. L., Wang, M. M., & Huang, Z. Y. (2011). Hydrocarbon degradation and bioemulsifier production by thermophilic Geobacillus pallidus strains. Bioresource Technology, 102, 9155–9161.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express the gratitude to Petroleum Research Newfoundland and Labrador (PRNL) and Research & Development Corporation (RDC) of Newfoundland and Labrador for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Zhang, B., Chen, B. et al. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada. Environ Monit Assess 187, 284 (2015). https://doi.org/10.1007/s10661-015-4490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4490-x

Keywords

Navigation