Skip to main content
Log in

Mechanisms Involved in Microbially Enhanced Oil Recovery

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Microbial enhanced oil recovery (MEOR) represents a possible cost-effective tertiary oil recovery method. Although the idea of MEOR has been around for more than 75 years, even now little is known of the mechanisms involved. In this study, Draugen and Ekofisk enrichment cultures, along with Pseudomonas spp. were utilized to study the selected MEOR mechanisms. Substrates which could potentially stimulate the microorganisms were examined, and l-fructose, d-galacturonic acid, turnose, pyruvic acid and pyruvic acid methyl ester were found to be the best utilized by the Ekofisk fermentative enrichment culture. Modelling results indicated that a mechanism likely to be important for enhanced oil recovery is biofilm formation, as it required a lower in situ cell concentration compared with some of the other MEOR mechanisms. The bacterial cells themselves were found to play an important role in the formation of emulsions. Bulk coreflood and flow cell experiments were performed to examine MEOR mechanisms, and microbial growth was found to lead to possible alterations in wettability. This was observed as a change in wettability from oil wet (contact angle 154°) to water wet (0°) due to the formation of biofilms on the polycarbonate coupons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson A.W., Gast A.P.: Physical Chemistry of Surfaces, 6th edn. Wiley, New York (1997)

    Google Scholar 

  • Allen, P.G., Francy, K.L., Dunston, J.M., Thomas, L.K., Ward, C.H.: Biosurfactant production and emulsification capacity of subsurface microorganisms. In: Soil Decontamination Using Biological Processes, International Symposium, Karlsruhe, Germany, pp. 58–66 (1992)

  • Alm E.W., Oerther D.B., Larsen N., Stahl D.A., Raskin L.: The oligonucleotide probe database. Appl. Environ. Microbiol. 62, 3557–3559 (1996)

    Google Scholar 

  • Beckman, J.W.: The action of bacteria on mineral oil. Ind. Eng. Chem. News 4(3) (1926)

  • Brown L.R., Vadie A.A., Stephens J.O.: Slowing production decline and extending the economic life of an oil field. SPE Reserv. Eval. Eng. 5, 33–41 (2002)

    Google Scholar 

  • Bryant R.S., Lockhart T.P.: Reservoir engineering analysis of microbial enhanced oil recovery. SPE Reserv. Eval. Eng. 5, 365–374 (2002)

    Google Scholar 

  • Chatzis J., Morrow N.R.: Correlation of capillary number relationships for sandstone. SPE J. 24(5), 555–562 (1984)

    Google Scholar 

  • Dahle H., Garshol F., Madsen M., Birkeland N.K.: Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie Van Leeuwenhoek 93, 37–49 (2008)

    Article  Google Scholar 

  • Dorobantu L.S., Yeung A.K.C., Foght J.M., Gray M.R.: Stabilization of oil–water emulsions by hydrophobic bacteria. Appl. Environ. Microbiol. 70(10), 6333–6336 (2004)

    Article  Google Scholar 

  • Gandler, G.L., Gbosi, A., Bryant, S.L., Britton, L.N.: Mechanistic understanding of microbial plugging for improved sweep efficiency. In: Symposium on Improved Oil Recovery, Tulsa, OK, SPE 10048 (2006)

  • Green, D., Willhite, G.E.: Enhanced Oil Recovery. Society of Petroleum Engineers, Richardson (1998)

  • Hall C., Tharakan P., Hallock J., Cleveland C., Jefferson M.: Hydrocarbons and the evolution of human culture. Nature 426(6964), 318–322 (2003)

    Article  Google Scholar 

  • Hoeiland S., Barth T., Blokhus A.M., Skauge A.: The effect of crude oil acid fractions on wettability as studied by interfacial tension and contact angles. J. Petrol. Sci. Technol. 30(2), 91–103 (2001)

    Google Scholar 

  • Jackson G., Beyenal H., Rees W.M., Lewandowski Z.: Growing reproducible biofilms with respect to structure and viable cell counts. J. Petrol. Sci. Technol. 47(1), 1–10 (2001)

    Google Scholar 

  • Kaster K.M., Bounannet K., Berland H., Kjeilen-Eilertsen G., Brakstad O.G.: Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 96(4), 423–439 (2009)

    Article  Google Scholar 

  • Khan, H.A., Gbosi, A., Britton, L.N., Bryant, S.L.: Mechanistic models of microbe growth in heterogenous porous media. In: SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, SPE 113462 (2008)

  • Kianipey, S.A., Donaldson, E.C.: Mechanisms of oil displacement by microorganisms. In: 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, SPE 15601 (1986)

  • Kowalewski E., Rueslatten I., Steen K.H., Bodtker G., Torsaeter O.: Microbial improved oil recovery—bacterial induced wettability and interfacial tension effects on oil production. J. Petrol. Sci. Technol. 52(1–4), 275–286 (2006)

    Google Scholar 

  • Lohne, A., Han, L., van der Zwaag, C., van Velzen, H., Mathisen, A.-M., Twynam, A., Hendriks, W., Bulgachev, R., Hatzignatiou, D.G.: Formation-damage and well-productivity simulation. SPE J. 15(3) (2010)

  • Lundquist A.D., Cheney D., Powell C.L., O’Neill P., Norton G., Veneman A.M., Evans N.Y., Mineta S., Abraham S., Allbaugh J.M., Whitman C.T., Bolten J.B., Daniels M.E., Lindsey L.B., Barrales R.: Energy for a New Century: Increasing Domestic Energy Production. U.S. Government Printing, Washington, DC (2001)

    Google Scholar 

  • Madigan M.T., Martinko J.M., Parker J.: Brock Biology of Microorganisms. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  • Marsh, T.L.X., Zhang, R.M., Knapp, R.M., McInerney, M., Sharma, P.K., Jackson, B.E.: Mechanism of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2. In: Bryant, R.S., Sublette, K.L. (eds.) The Fifth International Conference on Microbial Enhanced Oil Recovery and Related Biotechnology for Solving Environmental Problems, Springfield, VA, pp. 593–610 (1995)

  • McInerney M.J., Sublette K.L.: Oilfield microbiology. In: Hurst, C., Knudsen, G., McInerney, M., Stetzenbach, L., Walter, M. (eds) Manual of Environmental Microbiology, pp. 777–787. ASM Press, Washington, DC (2002)

    Google Scholar 

  • Metcalf & Eddy Inc., Tchobanoglous G., Burton F., Stensel H.D.: Wastewater Engineering Treatment and Reuse, 4th edn. McGraw-Hill Book Co., Boston (2002)

    Google Scholar 

  • Miranda-Tello E., Fardeai M.L., Joullan C., Magot M., Thomas P., Tholozan J.L., Ollivier B.: Petrotoga mexicana sp nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int. J. Syst. Evol. Microbiol. 54, 169–174 (2004)

    Article  Google Scholar 

  • Miranda-Tello E., Fardeai M.L., Joullan C., Magot M., Thomas P., Tholozan J.L., Ollivier B.: Petrotoga halophila sp nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. Int. J. Syst. Evol. Microbiol. 57, 40–44 (2007)

    Article  Google Scholar 

  • Mu, B., Wu, Z., Chen, Z., Wang, X., Ni, F., Zhou, J.: Wetting behavior on quartz surfaces by the microbial metabolism and metabolic products. In: 7th International Symposium on Wettability and Its Effect on Oil Recovery, Tasmania, Australia, March 12–14, 2002

  • Nazina T.N., Grigor’yan A.A., Shestakova N.M., Babich T.L., Ivoilov V.S., Feng Q., Ni F., Wang J., She Y., Xiang T., Luo Z., Belyaev S.S., Ivanov M.V.: Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery. Microbiology 76(3), 287–296 (2007)

    Article  Google Scholar 

  • Ollivier B., Cayol J.L.: Fermentative, iron-reducing and nitrate-reducing microorganisms. In: Magot, M., Ollivier, B. (eds) Petroleum Microbiology, pp. 71–88. ASM Press, Washington, DC (2005)

    Google Scholar 

  • Orphan V.J., Taylor L.T., Hafenbradl D., Delong E.F.: Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66(2), 700–711 (2000)

    Article  Google Scholar 

  • Pickering S.U.: Emulsions. J. Chem. Soc. 91, 2001–2021 (1907)

    Google Scholar 

  • Polson, E.J., Buckman, J.O., Bowen, D., Todd, A.C., Gow, M.M., Cuthbert, S.J.: An ESEM investigation into the effect of microbial biofilms on the wettability of quartz. In: 7th International Symposium on Wettability and Its Effect on Oil Recovery, Tasmania, Australia March 12–14, 2002

  • Rittmann B.E.: The significance of biofilms in porous media. Water Resour. Res. 29, 2195–2202 (1993)

    Article  Google Scholar 

  • Rouse, B., Hiebert, F., Lake, L.W.: Laboratory testing of a microbial enhanced oil recovery process under anaerobic conditions. In: SPE Annual Technical Conference. SPE, Washington, DC, SPE paper 24819 (1992)

  • Stalder A.F., Kulik G., Sage D., Barbier L., Hoffmann P.: A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf. A 286(1–3), 92–103 (2006)

    Article  Google Scholar 

  • Suzuki M.T., Rappe M.S., Haimberger Z.W., Winfield H., Adair N., Strobel J., Giovannoni S.J.: Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63(3), 983–989 (1997)

    Google Scholar 

  • Tachikawa M., Tezuka M., Morita M., Isogai K., Okada S.: Evaluation of some halogen biocides using a microbial biofilm system. Water Res. 39(17), 4126–4132 (2005)

    Article  Google Scholar 

  • Van Ooteghem S.A., Jones A., van der Lelie D., Dong B., Mahajan D.: H-2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol. Lett. 26(15), 1223–1232 (2004)

    Article  Google Scholar 

  • Wang, F.H.L.: Effects of reservoir anaerobic reducing conditions on surfactant retention in chemical flooding. In: SPE Annual Technical Conference and Exhibition, Dallas. SPE 22648 (1991)

  • Widdel F., Bak F.: Gram-negative mesophilic sulfate-reducing bacteria. In: Balows, A., Truper, H.G., Dworkins, M., Harder, W., Schleifer, K.H. (eds) The Prokaryotes, pp. 3352–3378. Springer, New York (1992)

    Google Scholar 

  • Yakimov M.M., Amro M.M., Bock M., Boseker K., Fredrickson H.L., Kessel D.G., Timmis K.N.: The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J. Petrol. Sci. Eng. 18(1–2), 147–160 (1997)

    Article  Google Scholar 

  • Yan N.X., Gray M.R., Masliyah J.H.: On water-in-oil emulsions stabilized by fine solids. Colloids Surf. A 193(1–3), 97–107 (2001)

    Article  Google Scholar 

  • Zobell C.E.: Bacterial release of oil from oil bearing materials. World Oil l(126), 36–47 (1947)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krista M. Kaster or Kate Boccadoro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaster, K.M., Hiorth, A., Kjeilen-Eilertsen, G. et al. Mechanisms Involved in Microbially Enhanced Oil Recovery. Transp Porous Med 91, 59–79 (2012). https://doi.org/10.1007/s11242-011-9833-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9833-7

Keywords

Navigation