Skip to main content
Log in

Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Biosurfactant-producing bacteria were isolated from the production water of an oil field. Isolates were screened for biosurfactant production using surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Brevibacilis brevis HOB1. It has been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the broth to 29 mN/m on commercial sugar and maltose, and to 32 mN/m on glucose after 72 h of growth. The maximum amount of biosurfactant was obtained when nitrate ions were supplied as nitrogen source. Biosurfactant produced by Brevibacilis brevis HOB1 was confirmed as a lipopeptide class of biosurfactant using TLC test and mass spectra. Lipopeptide isoforms were isolated from cell-free supernatants by acid-precipitation followed by one step of chromatographic separation on solid-phase ODS C18 column. The separation was confirmed by HPLC and ESI Q-TOF MS spectroscopy. Comparing the mass data obtained and the mass numbers reported for the lipopeptide complexes from other strains, it can be concluded that the major lipopeptide product of Brevibacilis brevis HOB1 is the surfactin isoform. This lipopeptide showed strong antibacterial and antifungal activity. It is a candidate for the biocontrol of pathogens in agriculture and other industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Georgiou G, Lin S, Sharma MM (1992) Surface active compounds from microorganisms. Biotechnology 10:60–65

    Article  PubMed  CAS  Google Scholar 

  2. Kosaric N, Cairns WL, Gray NCC (1987) Biosurfactants and biotechnology. Marcel Dekker, New York, USA

    Google Scholar 

  3. Zajic JE, Supplison B, Volesky B (1974) Bacterial degradation and emulsification of no. 6 fuel oil. Environ Sci Technol 8:664–668. doi:10.1021/es60092a010

    Article  CAS  Google Scholar 

  4. Pines O, Gutnick D (1986) Role for emulsan in growth of Acinetobacter alcoaceticus RAG-1 on crude oil. Appl Environ Microbiol 51:661–663

    PubMed  CAS  Google Scholar 

  5. Kosaric N, Gray NCC, Cairns WL (1987) Biotechnology and the surfactant industry. In: Kosaric N (ed) Surfactant science series. Marcel Dekker, New York, pp 1–19

    Google Scholar 

  6. Brown MJ (1991) Biosurfactants for cosmetic application. Int J Cosmet Sci 13:61–64. doi:10.1111/j.1467-2494.1991.tb00549.x

    Article  CAS  Google Scholar 

  7. Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Biotechnol 10:208–217. doi:10.1016/0167-7799(92)90215-H

    Article  PubMed  CAS  Google Scholar 

  8. Parkinson M (1985) Bio-surfactants. Biotechnol Adv 3:65–83. doi:10.1016/0734-9750(85)90006-0

    Article  PubMed  CAS  Google Scholar 

  9. Lin SC (1996) Biosurfactant: recent advances. J Chem Technol Biotechnol 66:109–120. doi :10.1002/(SICI)1097-4660(199606)66:2<109::AID-JCTB477>3.0.CO;2-2

    Article  CAS  Google Scholar 

  10. Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12. doi:10.1016/0960-8524(94)00101-6

    Article  CAS  Google Scholar 

  11. Swaranjit SC, Randhir SM (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266. doi:10.1016/j.mib.2004.04.006

    Article  Google Scholar 

  12. Besson F, Michel G (1992) Biosynthesis of iturin and surfactin by Bacillus subtilis. Evidence for amino acid activating enzymes. Biotechnol Lett 14:1013–1018. doi:10.1007/BF01021050

    Article  CAS  Google Scholar 

  13. Sandrin C, Peypoux F, Michel G (1990) Coproduction of surfactin and iturin A lipopeptides with surfactant and antifungal properties by Bacillus subtilis. Biotechnol Appl Biochem 12:370–375

    PubMed  CAS  Google Scholar 

  14. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptideliquid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488. doi:10.1016/0006-291X(68)90503-2

    Article  PubMed  CAS  Google Scholar 

  15. Citernesi AS, Filippi C, Bagnoli G, Giovanetti M (1994) Effects of the antimycotic molecule Iturin A2, secreted by Bacillus subtilis strain M51, on arbuscular mycorrhizal fungi. Microbiol Res 149(3):241–246

    PubMed  CAS  Google Scholar 

  16. Nissen E, Vater J, Pauli G, Vollenbroich D (1997) Application of surfactin for mycoplasma inactivation in virus stocks. In Vitro Cell Dev Biol Anim 33:414

    Article  PubMed  CAS  Google Scholar 

  17. Kameda Y, Matsui K, Hisato K, Yamada T, Sagai H (1972) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus Subtilis. Chem Pharm Bull (Tokyo) 20:1551

    CAS  Google Scholar 

  18. Ulrich C, Kluge B, Patacz Z, Vater J (1991) Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus Subtilis. Biochemistry 30:6503–6508. doi:10.1021/bi00240a022

    Article  Google Scholar 

  19. Morikawa M, Ito M, Imangka T (1992) Isolation of a new surfactin producer, Bacilis pumilis A-1, and cloning and nucleotide sequence of the regular gene, Psf-1. J Ferment Bioeng 74:255–261. doi:10.1016/0922-338X(92)90055-Y

    Article  CAS  Google Scholar 

  20. Harowitz S, Griffin WM (1991) Sructural analysis of Bacilis Licheniformis 86 Surfactant. J Ind Microbiol 7:45–52. doi:10.1007/BF01575602

    Article  Google Scholar 

  21. Jenny K, Kappeli O, Fiechter A (1991) Biosurfactants from Bacilis Licheniformis, structural analysis and characterization. Appl Microbiol Biotechnol 36:5–13. doi:10.1007/BF00164690

    Article  PubMed  CAS  Google Scholar 

  22. Morikawa M, Daido R, Takau T, Murata S, Shimonishi Y, Imanaka I (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466

    PubMed  CAS  Google Scholar 

  23. Laycock MV, Hildbrand PD, Thibault P, Walter JA, Wright JIC (1991) Viscosin, a potent peptidolipid biosurfactant and phytopathiogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J Agric Food Chem 39:483–489. doi:10.1021/jf00003a011

    Article  CAS  Google Scholar 

  24. Chou KC, Shen HB (2008) Cell-PLoc: a package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162. doi:10.1038/nprot.2007.494

    Article  PubMed  CAS  Google Scholar 

  25. Shen HB, Chou KC (2007) EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Commun 364:53–59. doi:10.1016/j.bbrc.2007.09.098

    Article  PubMed  CAS  Google Scholar 

  26. Chou KC (2004) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    PubMed  CAS  Google Scholar 

  27. Asubel FM, Brent R, Kingston RE, Moore DD, Seidman JA, Smith JG et al (1987) Current protocols in molecular biology. Wiley, New York, USA

    Google Scholar 

  28. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, USA, pp 115–175

    Google Scholar 

  29. Altschul SF, Thomas LM, Alejandro AS, Zhang JH, Zhang Z, Webb M et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  30. Cooper DG, MacDonald CR, Duff SJ, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    PubMed  CAS  Google Scholar 

  31. Ries FA, Servulo EFC, De Franca FP (2004) Lipopeptide surfactant production by Bacillus subtilis grown on low-cost raw materials. Appl Biochem Biotechnol 113–116:899–912. doi:10.1385/ABAB:115:1-3:0899

    Article  Google Scholar 

  32. Singh M, Saini V, Adhikari DK, Desai JD, Sista VR (1990) Production of bioemulsifier by a SCP producing strain of Candida tropicalis during hydrocarbon fermentation. Biotechnol Lett 12:743–746. doi:10.1007/BF01024732

    Article  CAS  Google Scholar 

  33. Ramana KV, Kranth NG (1989) Production of biosurfactants by the resting cells of Pseudomonas aeruginosa CFTR. Biotechnol Lett 11:437–442. doi:10.1007/BF01089479

    Article  CAS  Google Scholar 

  34. Haddad NI, Liu XY, Yang SZ, Mu BZ (2008) Surfactin Isoforms from Bacillus subtilis HSO121: separation and characterization. Protein Pept Lett 15:265–269. doi:10.2174/092986608783744225

    Article  PubMed  CAS  Google Scholar 

  35. Liu XY, Haddad NI, Yang SZ, Mu BZ (2007) Structural characterization of eight cyclic lipopeptides produced by Bacillus Subtilus HSO121. Protein Pept Lett 14:766–773. doi:10.2174/092986607781483642

    Article  PubMed  CAS  Google Scholar 

  36. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219. doi:10.1128/AEM.68.12.6210-6219.2002

    Article  PubMed  CAS  Google Scholar 

  37. Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 203:1–8. doi:10.1006/jcis.1998.5558

    Article  Google Scholar 

  38. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508. doi:10.1007/s002530051648

    Article  PubMed  CAS  Google Scholar 

  39. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563. doi:10.1007/s002530051432

    Article  PubMed  CAS  Google Scholar 

  40. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146. doi:10.1016/j.tibtech.2004.01.010

    Article  PubMed  CAS  Google Scholar 

  41. Sarker AA, Goursaud JC, Sharma MM, eorgiou G (1989) A critical evaluation of MEOR processes. In Situ 13:207–238

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.50374038), Specialized Research Fund for the Doctoral Program of Higher Education (20030251002) and by the Department of Science and Technology Shanghai (045407017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozhong Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, N.I.A., Wang, J. & Mu, B. Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. J Ind Microbiol Biotechnol 35, 1597–1604 (2008). https://doi.org/10.1007/s10295-008-0403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0403-0

Keywords

Navigation