Skip to main content

Advertisement

Log in

Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The incorporation of nanoparticles in industrial and biomedical applications has increased significantly in recent years, yet their hazardous and toxic effects have not been studied extensively. While standard toxicological test methods are generally capable of detecting the toxic effects, the choice of relevant methods for nanomaterials is still discussed. Among the various oxide nanomaterials, silica nanoparticles are widely used in biological applications that include nano-medicine. But studies on adverse effects of silica nanoparticle exposure to fish remain unclear. Therefore, the present study was designed to investigate the oxidative toxic effects of silicon dioxide nanoparticles using fish model. The size of the SiO2 nanoparticles was between 68 and 100 nm which was confirmed by X-ray diffractometer, dynamic light scattering, scanning electron microscope and transmission electron microscope. The zebra fish were exposed to sub-lethal concentrations (5 and 2.5 mg/L) of characterized SiO2 nanoparticles for a period of 7 days. After 7 days, SiO2 nanoparticle-treated fishes were sacrificed, and tissues such as liver, muscle and gill were dissected out for the analysis of antioxidant enzymes and DNA fragmentation. The DNA profiles were analysed in the tissues of zebra fish that treated with SiO2 nanoparticles. Tissues of fish from clean water were used as control, and DNA profiles were analysed. It is found that DNA from control tissues was intact, whereas the tissues treated with SiO2 were all fragmented. SiO2 nanoparticle-mediated antioxidant enzymes activities, such as catalase, superoxide dismutase, glutathione (GSH)-S-transferase, glutathione reductase and GSH, in the tissues of zebra fish were measured. The results revealed that alteration of antioxidant enzymes due to SiO2 nanoparticle can be considered as a biomarker to SiO2-mediated oxidative stress in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahamed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta, 411, 1841–1848.

    Article  CAS  Google Scholar 

  • Ahamed, M., Akhtar, M. J., Raja, M., Ahmad, I., Siddiqui, M. K. J., AlSalhi, M. S., et al. (2011). ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine, 7, 904–913.

    Article  CAS  Google Scholar 

  • Asharani, P. V., Mun, G. K., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279–290.

    Article  CAS  Google Scholar 

  • Balbus, J. M., Maynard, A. D., Colvin, V. L., Castranova, V., Daston, G. P., & Denison, R. A. (2007). Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environmental Health Perspectives, 115, 1654–1659.

    Article  Google Scholar 

  • Bellomo, G., Mirabelli, F., DiMonte, D., Richelmi, P., Thor, H., Orrenius, C., et al. (1987). Formation and reduction of glutathione—protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1, 4 naphthoquinone). Biochemical Pharmacology, 36, 1313–1320.

    Article  CAS  Google Scholar 

  • Culcasi, M., Benameur, L., Mercier, A., Lucchesi, C., Rahmouni, H., Asteian, A., et al. (2012). EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chemico-Biological Interactions, 199(3):161–176.

    Google Scholar 

  • Calibrone, A. L. (1985). Hand book of methods for oxygen radical research. Boca Raton: CRC. 283.

    Google Scholar 

  • Chen, M., & Von, M. A. (2005). Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Experimental Cell Research, 305, 51–62.

    Article  CAS  Google Scholar 

  • Chen, Z., Meng, H., Xing, G., Yuan, H., Zhao, F., Liu, R., et al. (2008). Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environmental Science and Technology, 42, 8985–8992.

    Article  CAS  Google Scholar 

  • Ferre, M., Gajdaschranty, K., Kantiani, L., & Barcelo, D. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry, 393, 81–95.

    Article  Google Scholar 

  • Fujita, K., Morimoto, Y., Ogami, A., Myoiyo, T., Tanaka, I., Shimada, M., et al. (2009). Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology, 258, 47–55.

    Article  CAS  Google Scholar 

  • Grassian, V. H., O'Shaughnessy, P. T., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115, 397–402.

    Article  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 251, 7130–7139.

    Google Scholar 

  • Halliwel, B., & Gutteridge, J. M. C. (1995). Free radicals in biology and medicine. New York: Oxford University Press.

    Google Scholar 

  • Hansen, S. F., Maynard, A., Baun, A., & Tickner, J. A. (2008). Late lessons from early warnings for nanotechnology. Nature Nanotechnology, 3, 444–447.

    Article  CAS  Google Scholar 

  • Hauck, T. S., Ghazani, A. A., & Chan, W. C. W. (2008). Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small, 4, 153–159.

    Article  CAS  Google Scholar 

  • Huang, C. C., Aronstam, R. S., Chen, D. R., & Huang, Y. W. (2010). Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in Vitro, 24, 45–55.

    Article  CAS  Google Scholar 

  • Hussain, S., Boland, S., & Baeza-Squiban, A. (2009). Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology, 260, 142–149.

    Article  CAS  Google Scholar 

  • Jonathan, K. (2008). Nanotechnology boom expected by 2015. Industrial week. July 22

  • Kaewamatawong, T., Shimada, A., Okajima, M., Inoue, H., Morita, T., Inoue, K., et al. (2006). Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. Toxicologic Pathology, 34, 958–965.

    Article  CAS  Google Scholar 

  • Li, Y., Sun, L., Jin, M., Du, Z., Liu, X., & Guo, C. (2011). Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicology In Vitro, 25(7), 1343–1352.

    Article  CAS  Google Scholar 

  • Limbach, K., Wick, P., Manser, P., Grass, R. N., Bruinink, A., & Stark, W. J. (2007). Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environmental Science and Technology, 41, 4158–4163.

    Article  CAS  Google Scholar 

  • Liu, T., Li, L., Teng, X., Huang, X., Liu, H., Chen, D., et al. (2011). Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials, 32, 1657–1668.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Lu, X., Tian, Y., Zhao, Q., Jin, T., Xiao, S., & Fan, X. (2011). Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice. Nanotechnology, 22, 16.

    Google Scholar 

  • Marklund, S., & Marklund, G. (1974). Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474.

    Article  CAS  Google Scholar 

  • Moron, M. S., Depierre, J. W., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase, and glutathione-S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta, 82, 67–78.

    Article  Google Scholar 

  • Nanovip. (2010). Who’s regulating nanotechnology? Nanovip. April 23. http://www.nanovip.com/whos-regulating-nanotechnology.html.

  • Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S., Tsutsumi, Y., & Yagi, K. (2009). Silica nanoparticles as hepatotoxicants. European Journal of Pharmaceutics and Biopharmaceutics, 72, 496–501.

    Article  CAS  Google Scholar 

  • Oberdorster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives, 112, 1058–1062.

    Article  CAS  Google Scholar 

  • Park, E. J., & Park, K. (2009). Oxidative stress, pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicology Letters, 184(1), 18–25.

    Article  CAS  Google Scholar 

  • Park, E. J., Choi, J., Park, Y., & Park, K. (2008). Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 1(2), 90–100.

    Article  Google Scholar 

  • Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3, 423–428.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Shi, H., Hudson, L. G., & Liu, K. J. (2004). Oxidative stress and apoptosis in metal ion induced carcinogenesis. Free Radical Biology & Medicine, 37, 582–593.

    Article  CAS  Google Scholar 

  • Shvedova, A. A., Castranova, V., Kisin, E. R., Murray, A. R., Schwegler-Berry, D., Gandelsman, V. Z., et al. (2003). Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxicology and Environmental Health. Part A, 66, 1901–1918.

    Article  Google Scholar 

  • Singh, N., Manshian, B., & Jenkins, G. J. S. (2009). Nano genotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30(23–24), 3891–3914.

    Article  CAS  Google Scholar 

  • Stober, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci, 26, 62–69.

    Article  Google Scholar 

  • Wise, J. P., Goodale, B. C., & Wise, S. S. (2010). Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquatic Toxicology, 97, 34–41.

    Article  CAS  Google Scholar 

  • Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., & Shi, H. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2, 2121–2134.

    Article  CAS  Google Scholar 

  • Xie, G., Sun, J., Zhong, G., Shi, L., & Zhang, D. (2010). Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Archives of Toxicology, 84, 183–190.

    Article  CAS  Google Scholar 

  • Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., et al. (2010). SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Particle and Fibre Toxicology, 7, 1.

    Article  CAS  Google Scholar 

  • Yu, K. O., Grabinski, C. M., Schrand, A. M., Murdock, R. C., Wang, W., Gu, B., et al. (2009). Toxicity of amorphous silica nanoparticles in mouse keratinocytes. Journal of Nanoparticle Research, 11, 15–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. R. Ramesh greatly acknowledges the University Grant commission (UGC), New Delhi for providing “UGC Research Fellowship in Sciences for Meritorious Students” (RFSMS) and the DST-FIST, UGC-SAP, UGC and MoE&F for the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, R., Kavitha, P., Kanipandian, N. et al. Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio). Environ Monit Assess 185, 5873–5881 (2013). https://doi.org/10.1007/s10661-012-2991-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2991-4

Keywords

Navigation