Skip to main content

Advertisement

Log in

Ecotoxicity and analysis of nanomaterials in the aquatic environment

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanotechnology is a major innovative scientific and economic growth area. However nanomaterial residues may have a detrimental effect on human health and the environment. To date there is a lack of quantitative ecotoxicity data, and recently there has been great scientific concern about the possible adverse effects that may be associated with manufactured nanomaterials. Nanomaterials are in the 1- to 100-nm size range and can be composed of many different base materials (carbon, silicon and metals, such as gold, cadmium and selenium) and they have different shapes. Particles in the nanometer size range do occur both in nature and as a result of existing industrial processes. Nevertheless, new engineered nanomaterials and nanostructures are different because they are being fabricated from the “bottom up”. Nanomaterial properties differ compared with those of the parent compounds because about 40–50% of the atoms in nanoparticles (NPs) are on the surface, resulting in greater reactivity than bulk materials. Therefore, it is expected that NPs will have different biological effects than parent compounds. In addition, release of manufactured NPs into the aquatic environment is largely an unknown. The surface properties and the very small size of NPs and nanotubes provide surfaces that may bind and transport toxic chemical pollutants, as well as possibly being toxic in their own right by generating reactive radicals. This review addresses hazards associated and ecotoxicological data on nanomaterials in the aquatic environment. Main weaknesses in ecotoxicological approaches, controversies and future needs are discussed. A brief discussion on the scarce number of analytical methods available to determinate nanomaterials in environmental samples is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McWilliams A (2006) BCC report highlights. Nanotechnology: a realistic market assessment. http://www.bccresearch.com/report/NAN031B.html. Accessed 2 Oct 2008

  2. Owen R, Handy R (2007) Environ Sci Technol 41:5582–5588

    Article  Google Scholar 

  3. Oberdörster G, Oberdörster E, Oberdörster J (2005) Environ Health Perspect 113:823–839

    Google Scholar 

  4. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Part Fibre Toxicol 2

  5. Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberdörster G (2007) Adv Mat 19:3124–3129

    Article  CAS  Google Scholar 

  6. Colvin VL (2003) Nat Biotechnol 21:1166–1170

    Article  CAS  Google Scholar 

  7. Nel A (2005) Science 308:804–806

    Article  CAS  Google Scholar 

  8. Zhao Q, Pang XF, Liu LW, Deng B (2007) The biological effect of iron oxide and its hydrate nanoparticles. Solid State Phenom 121–123(2):735–738

    Google Scholar 

  9. Donaldson K, Tran CL (2002) Inhal Toxicol 14:5–27

    Article  CAS  Google Scholar 

  10. Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL (2005) Toxicol Sci 88:514–524

    Article  CAS  Google Scholar 

  11. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Toxicol Sci 91:227–236

    Article  CAS  Google Scholar 

  12. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Toxicol Sci 77:347–357; Tomellini R, De VillepinR C (eds) (2005) European Commission, conclusions and recommendations for new research. In: Proceedings of the workshop research needs on nanoparticles, Brussels, pp 75–79

  13. Nel A, Xia T, Madler L, Li N (2006) Science 311:622–627

    Article  CAS  Google Scholar 

  14. Stern ST, McNeil SE (2008) Toxicol Sci 101:4–21

    Article  CAS  Google Scholar 

  15. Rogueda PGA, Traini D (2007) Expert Opin Drug Deliv 4:595–606

    Article  CAS  Google Scholar 

  16. Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Nanotoxicology 1:243–250

    Article  CAS  Google Scholar 

  17. Moore MN (2006) Environ Int 32:967–976

    Article  CAS  Google Scholar 

  18. Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O (2007) Sci Technol Adv Mat 8:47–59

    Article  CAS  Google Scholar 

  19. Lam CW, James JT, McCluskey R, Hunter RL (2004) Toxicol Sci 77:126–134

    Article  CAS  Google Scholar 

  20. Hoet PHM, Bruske-Hohlfeld I, Salata O (2004) J Nanobiotechnol 2:1–15

    Article  CAS  Google Scholar 

  21. Zhu S, Oberdörster E, Haasch ML (2006) Mar Environ Res 62

  22. Wiesner MR, Lowry GV, Alvarez PJJ, Dionysiou D, Biswas P (2006) Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  23. Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Environ Sci Technol 41:2636–2642

    Article  CAS  Google Scholar 

  24. Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Ecotoxicology 17:396–409

    Article  CAS  Google Scholar 

  25. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  26. Nowack B, Bucheli TD (2007) Environ Poll 150:5–22

    Article  CAS  Google Scholar 

  27. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  28. Chijiwa T, Arai T, Sugai T, Shinohara H, Kumazawa M, Takano M, Kawakami SI (1999) Geophys Res Lett 26:767–770

    Article  CAS  Google Scholar 

  29. Heymann D, Wolbach W (2006) In: Rietmeijer FJM (ed) Natural fullerenes and related structures of elemental carbon. Springer, Dorrecht, pp 191–212

  30. Esquivel EV, Murr LE (2004) Mat Character 52:15–25

    Article  CAS  Google Scholar 

  31. Murr LE, Esquivel EV, Bang JJ, De La Rosa G, Gardea-Torresdey JL (2004) Water Res 38:4282–4296

    Article  CAS  Google Scholar 

  32. Anastasio C, Martin ST (2001) Nanopart Environ 293–349

  33. Kittelson DB (1998) J Aerosol Sci 29:575–588

    Article  CAS  Google Scholar 

  34. Casey WH, Phillips BL, Furrer G (2001) Nanopart Environ 167–190

  35. Furrer G, Phillips BL, Ulrich KU, Thig R, Casey WH (2002) Science 297:2245–2247

    Article  CAS  Google Scholar 

  36. Matsunaga T, Sakaguchi T (2000) J Biosci Bioeng 90:1–13

    CAS  Google Scholar 

  37. Gilbert B, Banfield JF (2005) Rev Mineral Geochem 59:109–155

    Article  CAS  Google Scholar 

  38. Mackay CE, Johns M, Salatas JH, Bessinger B, Perri M (2006) Integ Environ Assess Manag 2:293–298

    Article  Google Scholar 

  39. Seekkuarachchi IN, Kumazawa H (2006) Ind Eng Comm 193:1333–1367

    CAS  Google Scholar 

  40. Seekkuarachchi IN, Kumazawa H (2008) Chem Eng Chem Res 47:2391–2400

    Article  CAS  Google Scholar 

  41. Fukushi K, Sato T (2005) Environ Sci Technol 39:1250–1256

    Article  CAS  Google Scholar 

  42. Kallay N, Salac S (2002) J Coll Interf Sci 253:70–76

    Article  CAS  Google Scholar 

  43. Zhu Y, Zhao Q, Li Y, Cai X, Li W (2006) J Nanosci Nanotechnol 6:1357–1364

    Article  CAS  Google Scholar 

  44. Xie B, Xu Z, Guo W, Li Q (2008) Environ Sci Technol 42:2853–2859

    Article  CAS  Google Scholar 

  45. Diegoli S, Manciulea AL, Begum S, Jones IP, Lead JR, Preece JA (2008) Sci Tot Environ 402:51–61

    Article  CAS  Google Scholar 

  46. Lecoanet HF, Bottero JY, Wiesner MR (2004) Environ Sci Technol 38:5164–5169

    Article  CAS  Google Scholar 

  47. Lecoanet HF, Wiesner MR (2004) Environ Sci Technol 38:4377–4382

    Article  CAS  Google Scholar 

  48. Guzman KAD, Finnegan MP, Banfield JF (2006) Environ Sci Technol 40:7688–7693

    Article  CAS  Google Scholar 

  49. Yang K, Zhu L, Xing B (2006) Environ Sci Technol 40:1855–1861

    Article  CAS  Google Scholar 

  50. Chen C, Wang X (2006) Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  51. Lu C, Liu C (2006) J Chem Technol Biotechnol 81:1932–1940

    Article  CAS  Google Scholar 

  52. Ding Q, Liang P, Song F, Xiang A (2006) Sep Sci Technol 41:2723–2732

    Article  CAS  Google Scholar 

  53. Cheng X, Kan AT, Tomson MB (2004) J Chem Eng Data 49:675–683

    Article  CAS  Google Scholar 

  54. Pal S, Tak YK, Song JM (2007) Appli Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  55. Madden AS, Hochella J (2005) Geochim Cosmochim Acta 69:389–398

    Article  CAS  Google Scholar 

  56. Chau CF, Wu SH, Yen GC (2007) Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  57. Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M (2008) Food Addit Contam 25:795–821

    Article  CAS  Google Scholar 

  58. Maynard AD (2000) Philos Trans R Soc Lond A 358:2593–2609

    Article  CAS  Google Scholar 

  59. Mavrocordatos D, Pronk W, Boller M (2004) Water Sci Technol 50:9–18

    CAS  Google Scholar 

  60. Liu J (2005) J Electron Microsc 54:251–278

    Article  CAS  Google Scholar 

  61. Doucet FJ, Lead JR, Maguire L, Achterberg EP, Millward GE (2005) J Environ Monitor 7:115–121

    Article  CAS  Google Scholar 

  62. Redwood PS, Lead JR, Harrison RM, Jones IP, Stoll S (2005) Environ Sci Technol 39:1962–1966

    Article  CAS  Google Scholar 

  63. Song Y, Heien ML, Jimenez V, Wightman RM, Murray RW (2004) Anal Chem 76:4911–4919

    Article  CAS  Google Scholar 

  64. Helfrich A, Chert W, Bettmer J (2006) J Anal At Spectrom 21:431–434

    Article  CAS  Google Scholar 

  65. Krueger KM, Al-Somali AM, Falkner JC, Colvin VL (2005) Anal Chem 77:3511–3515

    Article  CAS  Google Scholar 

  66. Ziegler KJ, Schmidt DJ, Rauwald U, Shah KN, Flor EL, Hauge RH, Smalley RE (2005) Nano Lett 5:2355–2359

    Article  CAS  Google Scholar 

  67. d’Orlye F, Varenne A, Gareil P (2008) J Chromatogr A 1204:226–232

    Article  CAS  Google Scholar 

  68. Lin KH, Chu TC, Liu FK (2007) J Chromatogr A 1161:314–321

    Article  CAS  Google Scholar 

  69. Williams A, Varela E, Meehan E, Tribe K (2002) Int J Pharm 242:295–299

    Article  CAS  Google Scholar 

  70. Chmela E, Tijssen R, Blom MT, Gardeniers HJGE, Van den Berg A (2002) Anal Chem 74:3470–3475

    Article  CAS  Google Scholar 

  71. Baalousha M, Lead JR (2007) Environ Sci Technol 41:1111–1117

    Article  CAS  Google Scholar 

  72. Ledin A, Karlsson S, Ker A, Allard B (1994) Water Res 28:1539–1545

    Article  CAS  Google Scholar 

  73. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Environ Sci Technol 39:1221–1230

    Article  CAS  Google Scholar 

  74. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  75. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  76. Andrievsky GV, Klochkov VK, Karyakina EL, Hedlov-Petrossyan NO (1999) Chem Phys Lett 300:392–396

    Article  CAS  Google Scholar 

  77. Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Pu CK, Rao AM, Klaine SJ (2007) Environ Sci Technol 41:3028–3029

    Google Scholar 

  78. Oberdörster G, Finkelstein JN (2006) Toxicol Sci 94:439

    Article  CAS  Google Scholar 

  79. Oberdörster E, Zhu S, Blickley TM, Clellan-Green P, Haasch ML (2006) Carbon 44:1112–1120

    Article  CAS  Google Scholar 

  80. Cheng J, Flahaut E, Shuk HC (2007) Environ Toxicol Chem 26:708–716

    Article  CAS  Google Scholar 

  81. Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006) Environ Sci Technol 40:7387–7393

    Article  CAS  Google Scholar 

  82. Ham HT, Choi YS, Chung IJ (2005) J Coll Interf Sci 286:216–223

    Article  CAS  Google Scholar 

  83. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) Environ Sci Technol 39:4307–4316

    Article  CAS  Google Scholar 

  84. Smith CJ, Shaw BJ, Handy RD (2007) Aquat Toxicol 82:94–109

    Article  CAS  Google Scholar 

  85. Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS (2007) Environ Health Perspect 115:1059–1065

    Article  CAS  Google Scholar 

  86. Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L (2008) Aquat Toxicol 87:127–137

    Article  CAS  Google Scholar 

  87. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Toxicol Lett 165:88–100

    Article  CAS  Google Scholar 

  88. Lovern SB, Klaper R (2006) Environ Toxicol Chem 25:1132–1137

    Article  CAS  Google Scholar 

  89. Hund-Rinke K, Simon M (2006) Environ Sci Poll Res 13:225–232

    Article  CAS  Google Scholar 

  90. Adams LK, Lyon DY, Alvarez PJJ (2006) Water Res 40:3527–3532

    Article  CAS  Google Scholar 

  91. Federici G, Shaw BJ, Handy RD (2007) Aquat Toxicol 84:415–430

    Article  CAS  Google Scholar 

  92. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  93. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Environ Sci Technol 41:8178–8186

    Article  CAS  Google Scholar 

  94. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  95. Mortimer M, Kasemets M, Heinlaan M, Kurvet I, Kahru A (2008) Toxicol In Vitro 22:1412–1417

    Article  CAS  Google Scholar 

  96. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) J Nanobiotechnol 3:1–10

    Article  Google Scholar 

  97. Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che CM, Chiu J-F, Tam PKH (2007) Chem Med Chem 2:129–136

    CAS  Google Scholar 

  98. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Sci Tot Environ 390:396–409

    Article  CAS  Google Scholar 

  99. Sondi I, Salopek-Sondi B (2004) J Coll Interf Sci 275:177–182

    Article  CAS  Google Scholar 

  100. Morones JR, Elechiguerra JL, Camacho-Bragado A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  101. Türk V, Kaiser C, Schaller S (2008) J Clean Prod 16:1006–1009

    Article  Google Scholar 

  102. Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S (2008) Nanotechnology 19

  103. Yeo MK, Kang M (2008) Bull Korean Chem Soc 29:1179–1184

    Article  CAS  Google Scholar 

  104. Lovern SB, Owen HA, Klaper R (2008) Nanotoxicology 2:43–48

    Article  CAS  Google Scholar 

  105. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Small 3:1941–1949

    Article  CAS  Google Scholar 

  106. Gagne F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauve S, Blaise C (2008) Aquat Toxicol 86:333–340

    Article  CAS  Google Scholar 

  107. Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) J Mol Med 83:377–385

    Article  Google Scholar 

  108. Hoshino A, Hanaki KI, Suzuki K, Yamamoto K (2004) Biochem Biophys Res Comm 314:46–53

    Article  CAS  Google Scholar 

  109. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Bioconjug Chem 15:79–86

    Article  CAS  Google Scholar 

  110. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–1762

    Article  CAS  Google Scholar 

  111. Shiohara A, Hoshino A, Hanaki KI, Suzuki K, Yamamoto K (2004) Microbiol Immunol 48:669–675

    CAS  Google Scholar 

  112. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Nat Med 10:993–998

    Article  CAS  Google Scholar 

  113. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1436

    Article  CAS  Google Scholar 

  114. Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  115. Zhang Y, Chen W, Zhang J, Liu J, Chen G, Pope C (2007) J Nanosci Nanotechnol 7:497–503

    Article  CAS  Google Scholar 

  116. Hassellov M, Readman JW, Ranville JF, Tiede K (2008) Ecotoxicology 17:344–361

    Article  CAS  Google Scholar 

  117. Becker L, Bada JL, Winans RE, Hunt JE, Bunch TE, French BM (1994) Science 265:642–645

    Article  CAS  Google Scholar 

  118. Gimbert LJ, Haygarth PM, Beckett R, Worsfold PJ (2006) Environ Chem 3:184–191

    Article  CAS  Google Scholar 

  119. Deye JR, Shiveley AN, Oehrle SA, Walters KA (2008) J Chrom A 1181:159–161

    Article  CAS  Google Scholar 

  120. Kozlovski V, Brusov V, Sulimenkov I, Pikhtelev A, Dodonov A (2004) Rapid Comm Mass Spectrom 18:780–786

    Article  CAS  Google Scholar 

  121. Ilchenko S, Cotter RJ (2007) Int J Mass Spectrom 265:372–381

    Article  CAS  Google Scholar 

  122. Xia XR, Monteiro-Riviere NA, Riviere JE (2006) J Chromatogr A 1129:216–222

    Article  CAS  Google Scholar 

  123. Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Anal Chem 79:9091–9097

    Article  CAS  Google Scholar 

  124. Jiang L, Gao L, Sun J (2003) J Coll Interf Sci 260:89–94

    Article  CAS  Google Scholar 

  125. Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Environ Sci Technol 41:179–184

    Article  CAS  Google Scholar 

  126. Kirschner AN, Erlanger BF, Wilson SR (2008) Nanotechnology (in press)

  127. Chang TH, Liu FK, Chang YC, Chu TC (2008) Chromatographia 67:723–730

    Article  CAS  Google Scholar 

  128. Huang HL, Wang HP, Wei GT, Sun IW, Huang JF, Yang YW (2006) Environ Sci Technol 40:4761–4764

    Article  CAS  Google Scholar 

  129. Kuçur E, Boldt FM, Cavaliere-Jaricot S, Ziegler J, Nann T (2007) Anal Chem 79:8987–8993

    Article  CAS  Google Scholar 

  130. Zhou Q, Xiao J, Wang W, Liu G, Shi Q, Wang J (2006) Talanta 68:1309–1315

    Article  CAS  Google Scholar 

  131. Cai Y, Jiang G, Liu J, Zhou Q (2003) Anal Chem 75:2517–2521

    Article  CAS  Google Scholar 

  132. Cai YQ, Cai YE, Mou SF, Lu YQ (2005) J Chromatogr A 1081:245–247

    Article  CAS  Google Scholar 

  133. Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Chem Phys Lett 376:154–158

    Article  CAS  Google Scholar 

  134. Zhou Q, Xiao J, Wang W (2006) J Chromatogr A 1125:152–158

    Article  CAS  Google Scholar 

  135. Biesaga M, Pyrzynska K (2006) J Sep Sci 29:2241–2244

    Article  CAS  Google Scholar 

  136. Long RQ, Yang RT (2001) J Am Chem Soc 123:2058–2059

    Article  CAS  Google Scholar 

  137. Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin YB, Terui N, Nodasaka Y, Sasa K, Shimizu K, Akasaka T, Shindoh M, Shibata KI, Yokoyama A, Mori M, Tanaka K, Sato Y, Tohji K, Tanaka S, Nishi N, Watari F (2004) Environ Sci Technol 38:6890–6896

    Article  CAS  Google Scholar 

  138. Zhou Q, Wang W, Xiao J (2006) Anal Chim Acta 559:200–206

    Article  CAS  Google Scholar 

  139. Gotovac S, Hattori Y, Noguchi D, Miyamoto JI, Kanamaru M, Utsumi S, Kanoh H, Kaneko K (2006) J Phys Chem B 110:16219–16224

    Article  CAS  Google Scholar 

  140. Cai YQ, Jiang GB, Liu JF, Zhou QX (2003) Anal Chim Acta 494:149–156

    Article  CAS  Google Scholar 

  141. Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Aquat Toxicol 86:379–387

    Article  CAS  Google Scholar 

  142. Lovern SB, Strickler JR, Klaper R (2007) Environ Sci Technol 41:4465–4470

    Article  CAS  Google Scholar 

  143. Oberdörster E (2004) Environ Health Perspect 112:1058–1062

    Google Scholar 

  144. Usenko CY, Harper SL, Tanguay RL (2007) Carbon 45:1891–1898

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the European Union through the project PROMOTE (GOCE518074) and by the Spanish Ministry of Education and Science through CTM2007–2817-E/TECNO and the project CEMAGUA (CGL2007–64551/HID). This article reflects only the authors’ views, and the EU is not liable for any use that may be made of the information contained therein. Marinella Farré thanks the Ministerio de Educación y Ciencia for its support through the I3P program. Lina Kantiani thanks the Alexander S. Onassis public benefit foundation F-ZD 029/2007–2008. Krisztina Gajda-Schrantz thanks the János Bólyai Hungarian Fellowship and the Balassi Institute-Hungarian Scholarship Board Office for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damià Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farré, M., Gajda-Schrantz, K., Kantiani, L. et al. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393, 81–95 (2009). https://doi.org/10.1007/s00216-008-2458-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2458-1

Keywords

Navigation