Skip to main content
Log in

Toxicity of amorphous silica nanoparticles in mouse keratinocytes

  • Nanoparticles and Occupational Health
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO2) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brown SC, Kamal M, Nasreen N, Baumuratov A, Sharma P, Anthony V, Moudgil BM (2007) Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv Powder Technol 18:69–79

    Article  CAS  Google Scholar 

  • Csogör ZS, Nacken M, Sameti M, Lehr C-M, Schmidt H (2003) Modified silica particles for gene delivery. Mater Sci Eng C 23:93–97

    Article  Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  PubMed  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  • Hoet PHM, Brueske-Hohlfeld I, Salata O (2004) Nanoparticles—known and unknown health risks. J Nanotoxicol 2:1–2

    Google Scholar 

  • Jillavenkatesa A, Kelly JF (2002) Nanopowder characterization: challenges and future directions. J Nanopart Res 4:463–468

    Article  CAS  Google Scholar 

  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256

    Article  PubMed  CAS  Google Scholar 

  • Lam C-W, James JT, McClustkey R, Hunter R (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Huang Y-W, Zhou X-D, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259

    Article  PubMed  CAS  Google Scholar 

  • McCabe MJ Jr (2003) Mechanisms and consequences of silica-induced apoptosis. Toxicol Sci 76:1–2

    Article  PubMed  CAS  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JL, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure via dynamic light scattering. Toxicol Sci 101:239–253

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Maedler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–626

    Article  PubMed  ADS  CAS  Google Scholar 

  • Oberdoerster G, Oberdoerster E, Oberdoerster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Modgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303

    Article  PubMed  CAS  Google Scholar 

  • Roy I, Ohulchanskyy T, Bharali D, Pudavar H, Mistretta R, Kaur N, Prasad P (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. PNAS 102:279–284

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ryman-Rrasnyssen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165

    Article  CAS  Google Scholar 

  • Service R (2005) Calls rise for more research on toxicology of nanomaterials. Science 310:1609

    Article  PubMed  CAS  Google Scholar 

  • Thibodeau M, Giardina C, Knecht DA, Helble J, Hubbare AK (2004) Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci 80:34–48

    Article  PubMed  CAS  Google Scholar 

  • Vinardell MP (2005) In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cell. Toxicol Sci 88:285–286

    Article  CAS  Google Scholar 

  • Vertegel AA, Aiegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzyme activity of adsorbed lysozyme. Langmuir 20:6800–6807

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantitating cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Gu B, Liang L, Hamilton W (2003a) Fabrication of two- and three-dimensional silica nanocolloidal particle arrays. J Phys Chem B 107:3400–3404

    Article  CAS  Google Scholar 

  • Wang W, Gu B, Liang L, Hamilton W (2003b) Fabrication of near infrared photonic crystals using highly-monodispersed submicrometer SiO2 spheres. J Phys Chem B 107:12113–12117

    Article  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Weff TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Yokel R (2005) The chemical species of aluminum influence its paracellular flux and uptake into Caco-2 cells, a model of gastrointestinal absorption. Toxicol Sci 87:15–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank Col J. Riddle for his strong support and encouragement for this research. Our thanks also go to Paul Bloomer and Richard Freeman for their computer support. This work was supported by the Air Force Office of Scientific Research (AFOSR) Project (BIN# 2312A214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber M. Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K.O., Grabinski, C.M., Schrand, A.M. et al. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11, 15–24 (2009). https://doi.org/10.1007/s11051-008-9417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9417-9

Keywords

Navigation