Skip to main content
Log in

On Modelling Simple Shear for Isotropic Incompressible Rubber-Like Materials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper we demonstrate the application of a recently proposed molecular based generalised neo-Hookean strain energy function within the family of limiting chain extensibility models to the simple shear of incompressible isotropic rubber-like hyperelastic materials. The two-parameter model of concern is capable of capturing both linear and highly nonlinear shear stress responses. It provides favourable simultaneous fits to experimental data for various components of the simple shear stress field, such as the shear stress and normal tractions/stresses, with a single set of parameter values. In addition, when used in a phenomenological context, the model also captures shear-softening behaviour and predicts an interesting instability. These modelling results are demonstrated in conjunction with a wide range of extant experimental data involving the simple shearing of biological tissue specimens and polymer and rubber samples. It will also be shown that in all these applications, the proposed model remains stable (convex) over the defined domain of deformation. These results underline the merits of the considered model for addressing some of the outstanding challenges in the constitutive modelling of the complex nonlinear behaviour of rubber-like materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Truesdell, C.: The Elements of Continuum Mechanics. Springer, New York (1966). https://doi.org/10.1007/978-3-642-64976-9

    Book  MATH  Google Scholar 

  2. Rivlin, R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. A 241, 379–397 (1948). https://doi.org/10.1098/rsta.1948.0024

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Atkin, R.J., Fox, N.: An Introduction to the Theory of Elasticity. Dover, New York (2005)

    MATH  Google Scholar 

  4. Gent, A.N., Suh, J.B., Kelly, S.G. III: Mechanics of rubber shear springs. Int. J. Non-Linear Mech. 42, 241–249 (2007). https://doi.org/10.1016/j.ijnonlinmec.2006.11.006

    Article  ADS  Google Scholar 

  5. Horgan, C.O., Murphy, J.G.: Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J. Elast. 98, 205–221 (2010). https://doi.org/10.1007/s10659-009-9225-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Horgan, C.O., Murphy, J.G.: A boundary layer approach to stress analysis in the simple shearing of rubber blocks. Rubber Chem. Technol. 85, 108–119 (2012). https://doi.org/10.5254/1.3672433

    Article  Google Scholar 

  7. Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. A. 467, 3633–3646 (2011). https://doi.org/10.1098/rspa.2011.0281

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Destrade, M., Murphy, J.G., Saccomandi, G.: Simple shear is not so simple. Int. J. Non-Linear Mech. 47, 210–214 (2012). https://doi.org/10.1016/j.ijnonlinmec.2011.05.008

    Article  ADS  Google Scholar 

  9. Thiel, C., Voss, J., Martin, R.J., Neff, P.: Shear, pure and simple. Int. J. Non-Linear Mech. 112, 57–72 (2019). https://doi.org/10.1016/j.ijnonlinmec.2018.10.002

    Article  ADS  Google Scholar 

  10. Mooney, M.: A theory of large elastic deformation. Int. J. Appl. Phys. 11, 582–592 (1940). https://doi.org/10.1063/1.1712836

    Article  MATH  ADS  Google Scholar 

  11. Mangan, R., Destrade, M., Saccomandi, G.: Strain energy function for isotropic non-linear elastic incompressible solids with linear finite strain response in shear and torsion. Extreme Mech. Lett. 9, 204–206 (2016). https://doi.org/10.1016/j.eml.2016.07.004

    Article  Google Scholar 

  12. Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear Mech. 40, 271–279 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.05.007

    Article  MATH  ADS  Google Scholar 

  13. Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012). https://doi.org/10.1016/j.mechmat.2012.03.007

    Article  Google Scholar 

  14. Anssari-Benam, A., Bucchi, A., Saccomandi, G.: On the central role of the invariant \(I_{2}\) in nonlinear elasticity. Int. J. Eng. Sci. 163, 103486 (2021). https://doi.org/10.1016/j.ijengsci.2021.103486

    Article  MATH  Google Scholar 

  15. Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. B Polym. Phys. 35, 1919–1931 (1997). https://doi.org/10.1002/(SICI)1099-0488(19970915)35:12<1919::AID-POLB7>3.0.CO;2-K

    Article  ADS  Google Scholar 

  16. Lahellec, N., Mazerolle, F., Michel, J.C.: Second-order estimate of the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation. J. Mech. Phys. Solids 52, 27–49 (2004). https://doi.org/10.1016/S0022-5096(03)00104-2

    Article  MATH  ADS  Google Scholar 

  17. Nunes, L.C.S.: Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test. Mater. Sci. Eng. A 528, 1799–1804 (2011). https://doi.org/10.1016/j.msea.2010.11.025

    Article  Google Scholar 

  18. Budday, S., Sommer, G., Birkl, C., Langkammer, C., Haybaeck, J., Kohnert, J., Bauer, M., Paulsen, F., Steinmann, P., Kuhl, E., Holzapfel, G.A.: Mechanical characterization of human brain tissue. Acta Biomater. 48, 319–340 (2017). https://doi.org/10.1016/j.actbio.2016.10.036

    Article  Google Scholar 

  19. Budday, S., Sarem, M., Starck, L., Sommer, G., Pfefferle, J., Phunchago, N., Kuhl, E., Paulsen, F., Steinmann, P., Shastri, V.P., Holzapfel, G.A.: Towards microstructure-informed material models for human brain tissue. Acta Biomater. 104, 53–65 (2020). https://doi.org/10.1016/j.actbio.2019.12.030

    Article  Google Scholar 

  20. Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34, 484–502 (2004). https://doi.org/10.1007/s00466-004-0593-y

    Article  MATH  Google Scholar 

  21. Destrade, M., Saccomandi, G., Sgura, I.: Methodical fitting for mathematical models of rubber-like materials. Proc. R. Soc. A 473, 20160811 (2017). https://doi.org/10.1098/rspa.2016.0811

    Article  MATH  ADS  Google Scholar 

  22. Yan, S., Jia, D., Yu, Y., Wang, L., Qiu, Y., Wan, Q.: Novel strategies for parameter fitting procedure of the Ogden hyperfoam model under shear condition. Eur. J. Mech. A, Solids 86, 104154 (2021). https://doi.org/10.1016/j.euromechsol.2020.104154

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Ogden, R.W.: Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565–584 (1972). https://doi.org/10.1098/rspa.1972.0026

    Article  MATH  ADS  Google Scholar 

  24. Destrade, M., Gilchrist, M.D., Murphy, J.G., Rashid, B., Saccomandi, G.: Extreme softness of brain matter in simple shear. Int. J. Non-Linear Mech. 75, 54–58 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.02.014

    Article  ADS  Google Scholar 

  25. Lopez-Pamies, O.: A new \(I_{1}\)-based hyperelastic model for rubber elastic materials. C. R. Mecanique 338, 3–11 (2010). https://doi.org/10.1016/j.crme.2009.12.007

    Article  MATH  Google Scholar 

  26. Anssari-Benam, A., Bucchi, A.: A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. Int. J. Non-Linear Mech. 128, 103626 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103626

    Article  MATH  ADS  Google Scholar 

  27. Poynting, J.H.: On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. A 82, 546–559 (1909). https://doi.org/10.1098/rspa.1909.0059

    Article  MATH  ADS  Google Scholar 

  28. Anssari-Benam, A., Bucchi, A.: Modelling the deformation of the elastin network in the aortic valve. J. Biomech. Eng. 140, 011004 (2018). https://doi.org/10.1115/1.4037916

    Article  Google Scholar 

  29. Puglisi, G., Saccomandi, G.: Multi-scale modelling of rubber-like materials and soft tissues: an appraisal. Proc. R. Soc. A 472, 20160060 (2016). https://doi.org/10.1098/rspa.2016.0060

    Article  ADS  Google Scholar 

  30. Anssari-Benam, A., Bucchi, A., Horgan, C.O., Saccomandi, G.: Assessment of a new isotropic hyperelastic constitutive model for a range of rubber-like materials and deformations. Rubber Chem. Technol. (2021). https://doi.org/10.5254/rct.21.78975. In press

    Article  MATH  Google Scholar 

  31. Anssari-Benam, A., Bucchi, A., Saccomandi, G.: Modelling the inflation and elastic instabilities of rubber-like spherical and cylindrical shells using a new generalised neo-Hookean strain energy function. J. Elast. (2021). https://doi.org/10.1007/s10659-021-09823-x

    Article  MATH  Google Scholar 

  32. Anssari-Benam, A., Horgan, C.O.: Extension and torsion of rubber-like hollow and solid circular cylinders for incompressible hyperelastic materials with limiting chain extensibility. Eur. J. Mech. A Solids 92, 104443 (2022). https://doi.org/10.1016/j.euromechsol.2021.104443

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Anssari-Benam, A., Horgan, C.O.: Torsional instability of incompressible hyperelastic rubber-like solid circular cylinders with limiting chain extensibility. Int. J. Solids Struct. Submitted

  34. Horgan, C.O.: A note on a class of generalized neo-Hookean models for isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech. 129, 103665 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103665

    Article  ADS  Google Scholar 

  35. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996). https://doi.org/10.5254/1.3538357

    Article  Google Scholar 

  36. Horgan, C.O.: The remarkable Gent constitutive model for hyperelastic materials. Int. J. Non-Linear Mech. 68, 9–16 (2015). https://doi.org/10.1016/j.ijnonlinmec.2014.05.010

    Article  ADS  Google Scholar 

  37. Anssari-Benam, A.: On a new class of non-Gaussian molecular based constitutive models with limiting chain extensibility for incompressible rubber-like materials. Math. Mech. Solids 26, 1660–1674 (2021). https://doi.org/10.1177/10812865211001094

    Article  MathSciNet  Google Scholar 

  38. Horgan, C.O., Saccomandi, G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002). https://doi.org/10.1023/A:1026029111723

    Article  MathSciNet  MATH  Google Scholar 

  39. Beatty, M.F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues - with examples. Appl. Mech. Rev. 40, 1699–1734 (1987). https://doi.org/10.1115/1.3149545

    Article  ADS  Google Scholar 

  40. Araújo, F.S., Nunes, L.C.S.: Experimental study of the Poynting effect in a soft unidirectional fiber-reinforced material under simple shear. Soft Matter 16, 7950–7957 (2020). https://doi.org/10.1039/D0SM00745E

    Article  ADS  Google Scholar 

  41. Nunes, L.C.S., Moreira, D.C.: Simple shear under large deformation: experimental and theoretical analyses. Eur. J. Mech. A, Solids 42, 315–322 (2013). https://doi.org/10.1016/j.euromechsol.2013.07.002

    Article  ADS  Google Scholar 

  42. Moreira, D.C., Nunes, L.C.S.: Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation. Polym. Test. 32, 240–248 (2013). https://doi.org/10.1016/j.polymertesting.2012.11.005

    Article  Google Scholar 

  43. Mullins, L.: Effect of stretching on the properties of rubber. J. Rubber Res. 16, 275–289 (1947). https://doi.org/10.5254/1.3546914

    Article  Google Scholar 

  44. Ogden, R.W., Roxburgh, D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A 455, 2861–2877 (1999). https://doi.org/10.1098/rspa.1999.0431

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Horgan, C.O., Ogden, R.W., Saccomandi, G.: A theory of stress softening of elastomers based on finite chain extensibility. Proc. R. Soc. Lond. A 460, 1737–1754 (2004). https://doi.org/10.1098/rspa.2003.1248

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Mihai, L.A., Chin, L., Janmey, P.A., Goriely, A.: A comparison of hyperelastic constitutive models applicable to brain and fat tissues. J. R. Soc. Interface 12, 20150486 (2015). https://doi.org/10.1098/rsif.2015.0486

    Article  Google Scholar 

  47. Budday, S., Ovaert, T.C., Holzapfel, G.A., Steinmann, P., Kuhl, E.: Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. Arch. Comput. Methods Eng. 27, 1187–1230 (2020). https://doi.org/10.1007/s11831-019-09352-w

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers for their constructive comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius O. Horgan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Tabulated Experimental Data

Appendix: Tabulated Experimental Data

Table 10 Budday et al. data [19]
Table 11 Yeoh and Fleming data [15]
Table 12 Destrade et al. data [24]
Table 13 Nunes data [17]
Table 14 Lahellec et al. data [16]
Table 15 Araújo and Nunes data [40]
Table 16 Nunes and Moreira data [41]
Table 17 Moreira and Nunes data [42]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anssari-Benam, A., Horgan, C.O. On Modelling Simple Shear for Isotropic Incompressible Rubber-Like Materials. J Elast 147, 83–111 (2021). https://doi.org/10.1007/s10659-021-09869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09869-x

Keywords

Mathematics Subject Classification

Navigation