Skip to main content
Log in

New compressible hyper-elastic models for rubberlike materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Multi-axial hyper-elastic models for large strain rubberlike elasticity are established in a broad sense free of the commonly assumed constraint of incompressibility. Results are derived directly from uniaxial stress–strain relations by means of certain explicit procedures. Novelties in four respects are incorporated in the new models: (i) constitutive parameters of direct physical meanings may be introduced to represent features of rubberlike elasticity; (ii) the usual incompressibility constraint is no longer assumed and relevant issues may be rendered irrelevant; (iii) the incompressibility case may be derived as a natural limit; and (iv) accurate agreement with benchmark data for several deformation modes may be achieved, including uniaxial extension, equi-biaxial extension as well as plane-strain extension and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M.L., Mott P.H., Roland C.M.: The compression of bonded rubber disks. Rubber Chem. Technol. 77, 293–302 (2004)

    Article  Google Scholar 

  2. Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  3. Beatty M.F.: Topic in finite elasticity: hyper-elasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40, 1699–1733 (1987)

    Article  Google Scholar 

  4. Beatty M.F.: On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids 13, 375–387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beatty M.F., Stalnaker D.O.: The Poisson function of finite elasticity. J. Appl. Mech. 53, 807–813 (1986)

    Article  MATH  Google Scholar 

  6. Bischoff E.B., Arruda E.M., Grush K.: A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem Technol. 74, 541–559 (2001)

    Article  Google Scholar 

  7. Blatz P.J., Ko W.L.: Application of finite elasticity theory to the deformation of rubber materials. J. Rheol. 6, 223–252 (1962)

    Article  Google Scholar 

  8. Bruhns O.T., Xiao H., Meyers A.: Self-consistent Eulerian rate type elastoplasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)

    Article  MATH  Google Scholar 

  9. Cam J.B.L., Toussaint E.: Cyclic volume changes in rubber. Mech. Mater. 41, 898–901 (2009)

    Article  Google Scholar 

  10. Christensen R.M.: A two material constant, nonlinear elastic stress constitutive equation including the effect of compressibility. Mech. Mater. 7, 155–162 (1988)

    Article  Google Scholar 

  11. Drozdov A.D., Gottlieb M.: Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mech. 183, 231–252 (2006)

    Article  MATH  Google Scholar 

  12. Ehlers W., Eipper G.: The simple tension problem at large volumetric strains computed from finite hyper-elastic material laws. Acta Mech. 130, 17–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fitzjerald S.: A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys. 51, 5111–5115 (1980)

    Article  Google Scholar 

  14. Fried E.: An elementary molecular-statistical basis for the Mooney and Rivlin–Saunders theories of rubber elasticity. J. Mech. Phys. Solids 50, 571–582 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  16. Hewitt F.G., Anthony R.L.: Measurement of the isothermal volume dilation accompanying the unilateral extension of rubber. J. Appl. Phys. 29, 1411–1414 (1958)

    Article  Google Scholar 

  17. Hill R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. A 326, 131–147 (1970)

    Article  Google Scholar 

  18. Horgan C.O., Murphy J.G.: Compression tests and constitutive models for the slight compressibility of elastic rubberlike materials. Int. J. Eng. Sci. 47, 1232–1239 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Horgan C.O., Murphy J.G.: Constitutive modeling for moderate deformations of slightly compressible rubber. J. Rheol. 53, 153–168 (2009)

    Article  Google Scholar 

  20. Horgan C.O., Saccomandi G.: A molecular-statistical basis for the Gent model of rubber elasticity. J. Elast. 68, 167–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horgan C.O., Saccomandi G.: Finite thermo-elasticity with limiting chain extensibility. J. Mech. Phys. Solids 75, 839–851 (2003)

    MathSciNet  Google Scholar 

  22. Horgan C.O., Saccomandi G.: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 77, 123–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, T.F., Yu, L.D., Yin, Z.N., Xiao, H.: Bounded elastic potentials for rubberlike materials with strain-stiffening effects. Z. Angew. Math. Mech. (2014). doi:10.1002/zamm.201400109

  24. Jones D.F., Treloar L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D 8, 1285–1304 (1975)

    Article  Google Scholar 

  25. Murphy J.G.: Strain energy functions for a Poisson power law function in simple torsion of compressible hyper-elastic materials. J. Elast. 60, 151–164 (2000)

    Article  MATH  Google Scholar 

  26. Nicholson D.W., Lin B.: Theory of thermo-hyperelasticity for near-incompressible elastomers. Acta Mech. 116, 15–28 (1996)

    Article  MATH  Google Scholar 

  27. Ogden R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike materials. Proc. R. Soc. Lond. A 326, 565–584 (1972)

    Article  MATH  Google Scholar 

  28. Ogden R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for compressible rubber-like materials. Proc. R. Soc. Lond. A 328, 567–583 (1972)

    Article  MATH  Google Scholar 

  29. Ogden R.W.: Volume changes associated with the deformation of rubber-like solids. J. Mech. Phys. Solids 24, 323–338 (1976)

    Article  Google Scholar 

  30. Ogden R.W.: Nearly isochoric elastic deformations: application to rubberlike solids. J. Mech. Phys. Solids 26, 37–57 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ogden R.W.: Non-Linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    Google Scholar 

  32. Ogden R.W., Saccomandi G., Sgura I.: On worm-like chain models within the three-dimensional continuum mechanics framework. Proc. R. Soc. Lond. A 462, 749–768 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pucci E., Saccomandi G.: A note on the Gent model for rubber-like materials. Rubber Chem. Technol. 75, 839–851 (2002)

    Article  Google Scholar 

  34. Puglisi G., Saccomandi G.: The Gent constitutive equation for rubber-like materials: an appraisal of a genial and simple idea. Int. J. Nonlinear Mech. 68, 17–24 (2015)

    Article  Google Scholar 

  35. Saccomandi, G.: Nonlinear elasticity for soft fibrous materials. In: Dorfmann, L., Ogden, R.W. (eds.) Non-linear Mechanics of Soft Fibrous Materials. CISM Courses and Lectures No. 559, Springer, Wien

  36. De Tommasi D., Puglisi G., Saccomandi G.: Multi-scale mechanics of macromolecular materials with unfolding domains. J. Mech. Phys. Solids 78, 54–72 (2015)

    Article  MathSciNet  Google Scholar 

  37. Treloar L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    Google Scholar 

  38. Wu P.D., van der Giessen E.: On improved network models for rubber elasticity and their application to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993)

    Article  MATH  Google Scholar 

  39. Wang X.M., Li H., Yin Z.N., Xiao H.: Multi-axial strain energy functions of rubberlike materials: an explicit approach based on polynomial interpolation. Rubber Chem. Technol. 87, 168–183 (2014)

    Article  Google Scholar 

  40. Xiao H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1–52 (2005)

    Article  Google Scholar 

  41. Xiao H.: An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubberlike materials-part 1: incompressible deformations. Acta Mech. 223, 2039–2063 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xiao H.: An explicit, direct approach to obtain multi-axial elastic potentials which accurately match data of four benchmark tests for rubbery materials—part 2: general deformations. Acta Mech. 224, 479–498 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiao, H.: Elastic potentials with best approximation to rubberlike elasticity. Acta Mech. (2014). doi:10.1007/s00707-014-1176-3

  44. Xiao H., Bruhns O.T., Meyers A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xiao H., Bruhns O.T., Meyers A.: The choice of objective rate s in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiao H., Bruhns O.T., Meyers A.: Explicit dual stress–strain and strain–stress relations of incompressible isotropic hyper-elastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  47. Xiao H., Bruhns O.T., Meyers A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)

    Article  MATH  Google Scholar 

  48. Xiao H., Bruhns O.T., Meyers A.: Thermo dynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 55, 338–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xiao H., Chen L.S.: Hencky’s logarithmic strain measure and dual stress–strain and strain–stress relations in isotropic finite hyperelasticity. Int. J. Solids Struct. 40, 1455–1463 (2003)

    Article  MATH  Google Scholar 

  50. Yu, L.D., Jin, T.F., Yin, Z.N., Xiao, H.: A model for rubberlike elasticity up to failure. Acta Mech. (2014). doi:10.1007/s00707-014-12626

  51. Zhang Y.Y., Li H., Wang X.M., Yin Z.N., Xiao H.: Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: An accurate, explicit approach based on rational interpolation. Contin. Mech. Thermodyn. 26, 207–220 (2013)

    Article  MathSciNet  Google Scholar 

  52. Zhang Y.Y., Li H., Xiao H.: Further study of rubber-like elasticity: elastic potentials matching biaxial data. Appl. Math. Mech. (Engl. Ed.) 35, 13–24 (2014)

    Article  MathSciNet  Google Scholar 

  53. Zuniga A.E.: A non-Gaussian network model for rubber elasticity. Polymer 47, 907–914 (2006)

    Article  Google Scholar 

  54. Zuniga A.E., Beatty M.F.: Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Eng. Sci. 40, 2265–2294 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Gu, ZX., Yin, ZN. et al. New compressible hyper-elastic models for rubberlike materials. Acta Mech 226, 4059–4072 (2015). https://doi.org/10.1007/s00707-015-1475-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1475-3

Keywords

Navigation