Skip to main content

Advertisement

Log in

Higher-Order Peridynamic Material Correspondence Models for Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Higher-order peridynamic material correspondence model can be developed based on the formulation of higher-order deformation gradient and constitutive correspondence with generalized continuum theories. In this paper, we present formulations of higher-order peridynamic material correspondence models adopting the material constitutive relations from the strain gradient theories. Similar to the formulation of the first-order deformation gradient, the weighted least squares technique is employed to construct the second-order and the third-order deformation gradients. Force density states are then derived as the Fréchet derivatives of the free energy density with respect to the deformation states. Connections to the second-order and the third-order strain gradient elasticity theories are established by realizing the relationships between the energy conjugate stresses of the higher-order deformation gradients in peridynamics and the stress measures in strain gradient theories. In addition to the horizon, length-scale parameters from strain gradient theories are explicitly incorporated into the higher-order peridynamic material correspondence models, which enables application of peridynamics theory to materials at micron and sub-micron scales where length-scale effects are significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)

    Google Scholar 

  2. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    ADS  Google Scholar 

  3. Sharpe, W.N., Jackson, K.M., Hemker, K.J., Xie, Z.: Effect of specimen size on Young’s modulus and fracture strength of polysilicon. J. Microelectromech. Syst. 10(3), 317–326 (2001)

    Google Scholar 

  4. Mathur, A., Erlebacher, J.: Size dependence of effective Young’s modulus of nanoporous gold. Appl. Phys. Lett. 90(6), 061910 (2007)

    ADS  Google Scholar 

  5. Agrawal, R., Peng, B., Gdoutos, E.E., Espinosa, H.D.: Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8(11), 3668–3674 (2008)

    ADS  Google Scholar 

  6. Sadeghian, H., Yang, C.K., Goosen, J.F.L., van der Drift, E., Bossche, A., French, P.J., van Keulen, F.: Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl. Phys. Lett. 94(22), 221903 (2009)

    ADS  Google Scholar 

  7. Xia, W., Ruiz, L., Pugno, N.M., Keten, S.: Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. Nanoscale 8, 6456–6462 (2016)

    ADS  Google Scholar 

  8. Wilkerson, R.P., Gludovatz, B., Watts, J., Tomsia, A.P., Hilmas, G.E., Ritchie, R.O.: A study of size effects in bioinspired, nacre-like, metal-compliant-phase (nickel-alumina) coextruded ceramics. Acta Mater. 148, 147–155 (2018)

    Google Scholar 

  9. Koiter, W.T.: Couple stresses in the theory of elasticity—I. Philos. Trans. R. Soc. Lond. B 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  10. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    MathSciNet  MATH  Google Scholar 

  11. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    MathSciNet  MATH  Google Scholar 

  12. Kafadar, C.B., Eringen, A.C.: Micropolar media—I. The classical theory. Int. J. Eng. Sci. 9(3), 271–305 (1971)

    MATH  Google Scholar 

  13. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  14. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Google Scholar 

  15. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    MATH  Google Scholar 

  16. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3(5), 731–742 (1967)

    MATH  Google Scholar 

  17. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    MathSciNet  MATH  Google Scholar 

  18. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    MathSciNet  MATH  Google Scholar 

  19. Eringen, A.C., Sung Kim, B.: Stress concentration at the tip of crack. Mech. Res. Commun. 1(4), 233–237 (1974)

    Google Scholar 

  20. Eringen, A.C.: Microcontinuum Field Theories—I. Foundations and Solids. Springer, New York (1999)

    MATH  Google Scholar 

  21. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  22. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    MATH  Google Scholar 

  23. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    ADS  MATH  Google Scholar 

  24. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)

    Google Scholar 

  25. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Zamani Nejad, M., Hadi, A.: Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams. Int. J. Eng. Sci. 106, 1–9 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Trädegård, A., Nilsson, F., Östlund, S.: Fem-remeshing technique applied to crack growth problems. Comput. Methods Appl. Mech. Eng. 160(1), 115–131 (1998)

    ADS  MATH  Google Scholar 

  28. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)

    MATH  Google Scholar 

  29. Dolbow, J., Harari, I.: An efficient finite element method for embedded interface problems. Int. J. Numer. Methods Eng. 78(2), 229–252 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42(9), 1397–1434 (1994)

    ADS  MATH  Google Scholar 

  31. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)

    Google Scholar 

  34. Cheng, Z., Wang, Z., Luo, Z.: Dynamic fracture analysis for shale material by peridynamic modelling. Comput. Model. Eng. Sci. 118(3), 509–527 (2019)

    Google Scholar 

  35. Agwai, A., Guven, I., Madenci, E.: Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65 (2011)

    MATH  Google Scholar 

  36. Jia, B., Ju, L., Wang, Q.: Numerical simulation of dynamic interaction between ice and wide vertical structure based on peridynamics. Comput. Model. Eng. Sci. 121(2), 501–522 (2019)

    Google Scholar 

  37. Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6), 1156–1168 (2011)

    Google Scholar 

  38. Song, Y., Yan, J., Li, S., Kang, Z.: Peridynamic modeling and simulation of ice craters by impact. Comput. Model. Eng. Sci. 121(2), 465–492 (2019)

    Google Scholar 

  39. Lai, X., Ren, B., Fan, H., Li, S., Wu, C.T., Regueiro, R.A., Liu, L.: Peridynamics simulations of geomaterial fragmentation by impulse loads. Int. J. Numer. Anal. Methods Geomech. 39(12), 1304–1330 (2015)

    Google Scholar 

  40. Wu, L., Huang, D., Xu, Y., Wang, L.: A non-ordinary state-based peridynamic formulation for failure of concrete subjected to impacting loads. Comput. Model. Eng. Sci. 118(3), 561–581 (2019)

    Google Scholar 

  41. Chowdhury, S.R., Masiur Rahaman, Md., Roy, D., Sundaram, N.: A micropolar peridynamic theory in linear elasticity. Int. J. Solids Struct. 59, 171–182 (2015)

    Google Scholar 

  42. Seleson, P., Parks, M.L., Gunzburger, M., Lehoucq, R.B.: Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Simul. 8(1), 204–227 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Yaghoobi, A., Chorzepa, M.G.: Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics. Comput. Struct. 188, 63–79 (2017)

    Google Scholar 

  44. Gu, X., Zhang, Q., Madenci, E., Xia, X.: Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model. Comput. Methods Appl. Mech. Eng. 357, 112592 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. 304, 408–451 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Chen, H.: Bond-associated deformation gradients for peridynamic correspondence model. Mech. Res. Commun. 90, 34–41 (2018)

    Google Scholar 

  47. Chen, H., Spencer, B.W.: Peridynamic bond-associated correspondence model: stability and convergence properties. Int. J. Numer. Methods Eng. 117(6), 713–727 (2019)

    MathSciNet  Google Scholar 

  48. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. In: Hassan, A., van der Giessen, E. (eds.) Advances in Applied Mechanics. Advances in Applied Mechanics, vol. 44, pp. 73–168. Elsevier, Amsterdam (2010)

    Google Scholar 

  49. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Madenci, E., Dorduncu, M., Barut, A., Phan, N.: Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput. Methods Appl. Mech. Eng. 337, 598–631 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Zimmerman, J.A., Bammann, D.J., Gao, H.: Deformation gradients for continuum mechanical analysis of atomistic simulations. Int. J. Solids Struct. 46(2), 238–253 (2009)

    MATH  Google Scholar 

  52. Aguiar, A.R., Fosdick, R.: A constitutive model for a linearly elastic peridynamic body. Math. Mech. Solids 19(5), 502–523 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Aguiar, A.R.: On the determination of a peridynamic constant in a linear constitutive model. J. Elast. 122, 27–39 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43(13), 1157–1184 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    MATH  Google Scholar 

  56. Altan, S.B., Aifantis, E.C.: On the structure of the mode iii crack-tip in gradient elasticity. Scr. Metall. Mater. 26(2), 319–324 (1992)

    Google Scholar 

  57. Ru, C.Q., Aifantis, E.C.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101(1), 59–68 (1993)

    MathSciNet  MATH  Google Scholar 

  58. Lazar, M., Maugin, G.A., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43(6), 1787–1817 (2006)

    MATH  Google Scholar 

  59. Khakalo, S., Niiranen, J.: Form ii of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano- to macro-scales. Eur. J. Mech. A, Solids 71, 292–319 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Polizzotto, C.: Gradient elasticity and nonstandard boundary conditions. Int. J. Solids Struct. 40(26), 7399–7423 (2003)

    MATH  Google Scholar 

  61. Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia – part I: constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50(24), 3749–3765 (2013)

    Google Scholar 

  62. Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44(22), 7486–7499 (2007)

    MATH  Google Scholar 

  63. Jenabidehkordi, A., Rabczuk, T.: The multi-horizon peridynamics. Comput. Model. Eng. Sci. 121(2), 493–500 (2019)

    Google Scholar 

  64. Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and their relevance for nanotechnologies. J. Mech. Phys. Solids 55(9), 1823–1852 (2007)

    ADS  MATH  Google Scholar 

  65. Harm, A., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of the Deformation Gradients and Force Density State for the Third-Order Material Correspondence Formulation

Appendix A: Derivation of the Deformation Gradients and Force Density State for the Third-Order Material Correspondence Formulation

1.1 A.1 Deformation Gradients up to the Third Order

In the limit of finite bond length, the Taylor series expansion of deformation state \(\underline{\mathbf{y}}\) by considering the differential terms up to the third-order can be written as

$$\begin{aligned} \underline{y}_{i} = F_{iI}^{\boldsymbol{\xi }} \underline{X}_{I} + \frac{1}{2} F_{\mathit{iIM}}^{(1), \boldsymbol{\xi }} \underline{X}_{I} \underline{X}_{M} + \frac{1}{6} F_{\mathit{iIMN}}^{(2), \boldsymbol{\xi }} \underline{X}_{I} \underline{X}_{M} \underline{X}_{N}, \end{aligned}$$
(A.1)

where \(F_{iI}^{\boldsymbol{\xi }}\) and \(F_{\mathit{iIM}}^{(1),\boldsymbol{\xi }}\) are given by, respectively, Eqs. (12) and (27), and

$$\begin{aligned} F_{\mathit{iIMN}}^{(2),\boldsymbol{\xi }} := \frac{\partial ^{3} \underline{y}_{i}}{\partial \underline{X}_{I} \underline{X}_{M} \underline{X}_{N}} \end{aligned}$$
(A.2)

is the mixed third-order derivative of the deformation state.

Here, the weighted squares of the errors are given by

$$\begin{aligned} \mathscr{E} = \int _{\mathscr{H}_{\mathbf{X}}}{\omega \Big( \underline{y}_{i} - F_{iI} \underline{X}_{I} - \frac{1}{2} F_{\mathit{iIM}}^{(1)} \underline{X}_{I} \underline{X}_{M} - \frac{1}{6} F_{\mathit{iIMN}}^{(2)} \underline{X}_{I} \underline{X}_{M} \underline{X}_{N} \Big)^{2}dV_{ \mathbf{X}^{\prime }}}. \end{aligned}$$
(A.3)

Minimizing the weighted squares of errors yields

$$\begin{aligned} \frac{\partial \mathscr{E}}{\partial F_{iI}} &= 0, \end{aligned}$$
(A.4a)
$$\begin{aligned} \frac{\partial \mathscr{E}}{\partial F_{\mathit{iIM}}^{(1)}}& = 0, \end{aligned}$$
(A.4b)
$$\begin{aligned} \frac{\partial \mathscr{E}}{\partial F_{\mathit{iIMN}}^{(2)}} &= 0, \end{aligned}$$
(A.4c)

for all \(i\), \(I\), \(M\) and \(N \in \) [1, 2, 3]. These necessary conditions for a minimum yield the following equations

$$\begin{aligned} \big( L_{2} \big)_{\mathit{iQ}} - F_{iI} \big( K_{2} \big)_{\mathit{IQ}} - \frac{1}{2} F_{\mathit{iIM}}^{(1)} \big( K_{3} \big)_{\mathit{IMQ}} - \frac{1}{6} F_{\mathit{iIMN}}^{(2)} \big( K_{4} \big)_{\mathit{IMNQ}} &= 0, \end{aligned}$$
(A.5a)
$$\begin{aligned} \big( L_{3} \big)_{\mathit{iQO}} - F_{iI} \big( K_{3} \big)_{\mathit{IQO}} - \frac{1}{2} F_{\mathit{iIM}}^{(1)} \big( K_{4} \big)_{\mathit{IMQO}} - \frac{1}{6} F_{\mathit{iIMN}}^{(2)} \big( K_{5} \big)_{\mathit{IMNQO}} &= 0, \end{aligned}$$
(A.5b)
$$\begin{aligned} \big( L_{4} \big)_{\mathit{iQOR}} - F_{iI} \big( K_{4} \big)_{\mathit{IQOR}} - \frac{1}{2} F_{\mathit{iIM}}^{(1)} \big( K_{5} \big)_{\mathit{IMQOR}} - \frac{1}{6} F_{\mathit{iIMN}}^{(2)} \big( K_{6} \big)_{\mathit{IMNQOR}}& = 0, \end{aligned}$$
(A.5c)

where

$$\begin{aligned} \big( L_{4} \big)_{\mathit{iQOR}} &:= \int _{\mathscr{H}_{\mathbf{X}}}{\omega \underline{y}_{i} \underline{X}_{Q} \underline{X}_{O} \underline{X}_{R} dV_{\mathbf{X}^{\prime }}}, \end{aligned}$$
(A.6a)
$$\begin{aligned} \big( K_{5} \big)_{\mathit{IMQOR}}& := \int _{\mathscr{H}_{\mathbf{X}}}{\omega \underline{X}_{I} \underline{X}_{M} \underline{X}_{Q} \underline{X}_{O} \underline{X}_{R} dV_{\mathbf{X}^{\prime }}}, \end{aligned}$$
(A.6b)
$$\begin{aligned} \big( K_{6} \big)_{\mathit{IMNQOR}} &:= \int _{\mathscr{H}_{\mathbf{X}}}{ \omega \underline{X}_{I} \underline{X}_{M} \underline{X}_{N} \underline{X}_{Q} \underline{X}_{O} \underline{X}_{R} dV_{\mathbf{X}^{ \prime }}}. \end{aligned}$$
(A.6c)

The deformation gradient can be found from Eq. (A.5a) in terms of \(\mathbf{F}^{(1)}\) and \(\mathbf{F}^{(2)}\) as

$$\begin{aligned} F_{iJ} &= \big( L_{2} \big)_{\mathit{iQ}} \big( K_{2}^{-1} \big)_{\mathit{QJ}} - \frac{1}{2} F_{\mathit{iIM}}^{(1)} \big( K_{3} \big)_{\mathit{IMQ}} \big( K_{2}^{-1} \big)_{\mathit{QJ}} \\ &- \frac{1}{6} F_{\mathit{iIMN}}^{(2)} \big( K_{4} \big)_{\mathit{IMNQ}} \big( K_{2}^{-1} \big)_{\mathit{QJ}}. \end{aligned}$$
(A.7)

Substituting Eq. (A.7) into Eq. (A.5b), one obtains

$$\begin{aligned} \big( \widetilde{L}_{3} \big)_{\mathit{iQO}} - \frac{1}{2} F_{\mathit{iJM}}^{(1)} \big( \widetilde{K}_{4} \big)_{\mathit{JMQO}} - \frac{1}{6} F_{\mathit{iJMN}}^{(2)} \big( \widetilde{K}_{5} \big)_{\mathit{JMNQO}} = 0, \end{aligned}$$
(A.8)

with

$$\begin{aligned} \big( \widetilde{K}_{5} \big)_{\mathit{JMNQO}} := \big( K_{5} \big)_{\mathit{JMNQO}} - \big( K_{4} \big)_{\mathit{JMNR}} \big( K_{2}^{-1} \big)_{\mathit{RS}} \big( K_{3} \big)_{\mathit{SQO}}. \end{aligned}$$
(A.9)

It should be noted that following symmetric relationship exists for \(\widetilde{\mathbf{K}}_{5}\) as

$$\begin{aligned} \widetilde{\mathbf{K}}_{5} = \mathbf{K}_{5} - \mathbf{K}_{4} \mathbf{K}_{2}^{-1} \mathbf{K}_{3} = \mathbf{K}_{5} - \mathbf{K}_{3} \mathbf{K}_{2}^{-1} \mathbf{K}_{4}. \end{aligned}$$
(A.10)

Appropriate products between tensors of different ranks are implied in Eq. (A.10).

The Hessian \(\mathbf{F}^{(1)}\) can then be found from Eq. (A.8) in terms of \(\mathbf{F}^{(2)}\) as

$$\begin{aligned} F_{\mathit{iJM}}^{(1)} = 2 \; \big( \widetilde{L}_{3} \big)_{\mathit{iQO}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOJM}} - \frac{1}{3} F_{\mathit{iINR}}^{(2)} \big( \widetilde{K}_{5} \big)_{\mathit{INRQO}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOJM}}. \end{aligned}$$
(A.11)

Substituting Eqs. (A.7) and (A.11) into Eq. (A.5c) yields

$$\begin{aligned} \big( \widetilde{L}_{4} \big)_{\mathit{iQOR}} - \frac{1}{6} F_{\mathit{iJMN}}^{(2)} \big( \widetilde{K}_{6} \big)_{\mathit{JMNQOR}} = 0, \end{aligned}$$
(A.12)

with

$$\begin{aligned} \big( \widetilde{L}_{4} \big)_{\mathit{iQOR}} &:= \big( L_{4} \big)_{\mathit{iQOR}} - \big( L_{2} \big)_{iI} \big( K_{2}^{-1} \big)_{\mathit{IJ}} \big( K_{4} \big)_{\mathit{JQOR}} \\ &- \big( \widetilde{L}_{3} \big)_{\mathit{iIS}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{ISTV}} \big( \widetilde{K}_{5} \big)_{\mathit{TVQOR}}, \end{aligned}$$
(A.13)
$$\begin{aligned} \big( \widetilde{K}_{6} \big)_{\mathit{JMNQOR}} &:= \big( K_{6} \big)_{\mathit{JMNQOR}} - \big( K_{4} \big)_{JMNS} \big( K_{2}^{-1} \big)_{\mathit{ST}} \big( K_{4} \big)_{\mathit{TQOR}} \\ &- \big( \widetilde{K}_{5} \big)_{\mathit{JMNST}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{STVW}} \big( \widetilde{K}_{5} \big)_{\mathit{VWQOR}}. \end{aligned}$$
(A.14)

Therefore, the mixed third-order derivative \(\mathbf{F}^{(2)}\) can be found from Eq. (A.12) as

$$\begin{aligned} F_{\mathit{iJMN}}^{(2)} = 6 \; \big( \widetilde{L}_{4} \big)_{\mathit{iQOR}} \big( \widetilde{K}_{6}^{-1} \big)_{\mathit{QORJMN}}. \end{aligned}$$
(A.15)

Substituting Eq. (A.15) into Eq. (A.11), one obtains the final form of \(\mathbf{F}^{(1)}\) as

$$\begin{aligned} F_{\mathit{iJM}}^{(1)} &= 2 \; \big( \widetilde{L}_{3} \big)_{\mathit{iQO}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOJM}} \\ &- 2 \; \big( \widetilde{L}_{4} \big)_{\mathit{iSTV}} \big( \widetilde{K}_{6}^{-1} \big)_{\mathit{STVINR}} \big( \widetilde{K}_{5} \big)_{\mathit{INRQO}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOJM}}. \end{aligned}$$
(A.16)

Substituting Eqs. (A.15) and (A.16) into Eq. (A.7), we obtain the final form of \(\mathbf{F}\) as

$$\begin{aligned} F_{iJ} &= \big( L_{2} \big)_{iM} \big( K_{2}^{-1} \big)_{\mathit{MJ}} - \big( \widetilde{L}_{3} \big)_{\mathit{iQO}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOIN}} \big( K_{3} \big)_{\mathit{INM}} \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &- \big( \widetilde{L}_{4} \big)_{\mathit{iQOR}} \big( \widetilde{K}_{6}^{-1} \big)_{\mathit{QORINS}} \Big[ \big( K_{4} \big)_{\mathit{INSM}} \\ &- \big( \widetilde{K}_{5} \big)_{\mathit{INSTU}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{TUVW}} \big( K_{3} \big)_{\mathit{VWM}} \Big] \big( K_{2}^{-1} \big)_{\mathit{MJ}}. \end{aligned}$$
(A.17)

1.2 A.2 Force Density State Based on Deformation Gradients up to the Third Order

The changes of the deformation gradient \(\Delta F_{iJ}\), the Hessian \(\Delta F_{\mathit{iJM}}^{(1)}\), and the mixed third-order derivative \(\Delta F_{iJMN}^{(2)}\) resulted from increment in the deformation state \(\Delta \underline{y}_{i}\) can be found as

$$\begin{aligned} \Delta F_{iJ} &= \Big( \int _{\mathscr{H}_{\mathbf{X}}}{\omega \Delta \underline{y}_{i} \underline{X}_{M}}dV_{\mathbf{X}^{\prime }} \Big) \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &- \Big( \int _{\mathscr{H}_{\mathbf{X}}}{\omega \Delta \underline{y}_{i} \underline{X}_{Q} \underline{X}_{O}}dV_{\mathbf{X}^{\prime }} \Big) \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOIN}} \big( K_{3} \big)_{\mathit{INM}} \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &+ \Big( \int _{\mathscr{H}_{\mathbf{X}}}{\omega \Delta \underline{y}_{i} \underline{X}_{R}}dV_{\mathbf{X}^{\prime }} \Big) \big( K_{2}^{-1} \big)_{\mathit{RS}} \big( K_{3} \big)_{\mathit{SQO}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOIN}} \big( K_{3} \big)_{\mathit{INM}} \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &- \big(\Delta \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORINS}} \Big[ \big( K_{4} \big)_{\mathit{INSM}} \\ &- \big( \widetilde{K}_{5} \big)_{\mathit{INSTU}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{TUVW}} \big( K_{3} \big)_{\mathit{VWM}} \Big] \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &= \nabla _{j} F_{iJ} \bullet \Delta \underline{y}_{j}, \end{aligned}$$
(A.18)
$$\begin{aligned} \Delta F_{\mathit{iJM}}^{(1)} &= 2 \Big( \int _{\mathscr{H}_{\mathbf{X}}}{ \omega \Delta \underline{y}_{i} \underline{X}_{Q} \underline{X}_{O}}dV_{ \mathbf{X}^{\prime }} \Big) \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOJM}} \\ &- 2 \Big( \int _{\mathscr{H}_{\mathbf{X}}}{\omega \Delta \underline{y}_{i} \underline{X}_{I}}dV_{\mathbf{X}^{\prime }} \Big) \big( K_{2} \big)^{-1}_{\mathit{IS}} \big( K_{3} \big)_{\mathit{SQO}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOJM}} \\ &- 2 \big( \Delta \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORSIN}} \big( \widetilde{K}_{5} \big)_{\mathit{SINTU}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{TUJM}} \\ &= \nabla _{j} F_{\mathit{iJM}}^{(1)} \bullet \Delta \underline{y}_{j}, \end{aligned}$$
(A.19)
$$\begin{aligned} \Delta F_{\mathit{iJMN}}^{(2)} &= 6 \big( \Delta \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORJMN}} = \nabla _{j} F_{\mathit{iJMN}}^{(2)} \bullet \Delta \underline{y}_{j}, \end{aligned}$$
(A.20)

with

$$\begin{aligned} \big( \Delta \widetilde{L}_{4} \big)_{\mathit{iQOR}} &:= \int _{\mathscr{H}_{ \mathbf{X}}}{\omega \Delta \underline{y}_{i} \underline{X}_{Q} \underline{X}_{O} \underline{X}_{R}}dV_{\mathbf{X}^{\prime }} \\ &- \Big( \int _{\mathscr{H}_{\mathbf{X}}}{\omega \Delta \underline{y}_{i} \underline{X}_{I}}dV_{\mathbf{X}^{\prime }} \Big) \big( K_{2}^{-1} \big)_{\mathit{IJ}} \big( K_{4} \big)_{\mathit{JQOR}} \\ &- \Big( \int _{\mathscr{H}_{\mathbf{X}}}{\omega \Delta \underline{y}_{i} \underline{X}_{I} \underline{X}_{S}}dV_{\mathbf{X}^{\prime }} \Big) \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{ISTV}} \big( \widetilde{K}_{5} \big)_{\mathit{TVQOR}} \\ &+ \Big( \int _{\mathscr{H}_{\mathbf{X}}}{\omega \Delta \underline{y}_{i} \underline{X}_{M}}dV_{\mathbf{X}^{\prime }} \Big) \big( K_{2}^{-1} \big)_{\mathit{MN}} \big( K_{3} \big)_{\mathit{NIS}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{ISTV}} \big( \widetilde{K}_{5} \big)_{\mathit{TVQOR}}. \end{aligned}$$
(A.21)

Therefore, the Fréchet derivatives of these three deformation gradients can be identified as

$$\begin{aligned} \nabla _{j} F_{iJ} &= \omega \delta _{ij} \underline{X}_{M} \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &- \omega \delta _{ij} \underline{X}_{Q} \underline{X}_{O} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOIN}} \big( K_{3} \big)_{\mathit{INM}} \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &+ \omega \delta _{ij} \underline{X}_{R} \big( K_{2}^{-1} \big)_{\mathit{RS}} \big( K_{3} \big)_{\mathit{SQO}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOIN}} \big( K_{3} \big)_{\mathit{INM}} \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &- \big( \nabla _{j} \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORINS}} \Big[ \big( K_{4} \big)_{\mathit{INSM}} \\ &- \big( \widetilde{K}_{5} \big)_{\mathit{INSTU}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{TUVW}} \big( K_{3} \big)_{\mathit{VWM}} \Big] \big( K_{2}^{-1} \big)_{\mathit{MJ}}, \end{aligned}$$
(A.22)
$$\begin{aligned} \nabla _{j} F_{\mathit{iJM}}^{(1)} &= 2 \omega \delta _{ij} \Big( \underline{X}_{Q} \underline{X}_{O} - \underline{X}_{I} \big( K_{2} \big)^{-1}_{\mathit{IS}} \big( K_{3} \big)_{\mathit{SQO}} \Big) \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOJM}} \\ &- 2 \big( \nabla _{j} \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORSIN}} \big( \widetilde{K}_{5} \big)_{\mathit{SINTU}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{TUJM}}, \end{aligned}$$
(A.23)
$$\begin{aligned} \nabla _{j} F_{\mathit{iJMN}}^{(2)} = 6 \big( \nabla _{j} \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORJMN}}, \end{aligned}$$
(A.24)

with

$$\begin{aligned} \big( \nabla _{j} \widetilde{L}_{4} \big)_{\mathit{iQOR}} &:= \omega \delta _{ij} \Big[ \underline{X}_{Q} \underline{X}_{O} \underline{X}_{R} - \underline{X}_{I} \big( K_{2}^{-1} \big)_{\mathit{IJ}} \big( K_{4} \big)_{\mathit{JQOR}} \\ &- \underline{X}_{I} \underline{X}_{S} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{ISTV}} \big( \widetilde{K}_{5} \big)_{\mathit{TVQOR}} \\ &+ \underline{X}_{M} \big( K_{2}^{-1} \big)_{\mathit{MN}} \big( K_{3} \big)_{\mathit{NIS}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{ISTV}} \big( \widetilde{K}_{5} \big)_{\mathit{TVQOR}} \Big]. \end{aligned}$$
(A.25)

Following the same idea by equating the energy of a peridynamic material point with its continuum counterpart given by Eq. (22), we have

$$\begin{aligned} \Delta \mathscr{W} \big( \Delta \underline{y}_{j} \big) &= \frac{\partial \mathscr{W}^{(2)} \big( F_{iJ}; F_{\mathit{iJM}}^{(1)}; F_{\mathit{iJMN}}^{(2)} \big)}{\partial F_{iJ}} \Delta F_{iJ} \\ &+ \frac{\partial \mathscr{W}^{(2)} \big( F_{iJ}; F_{\mathit{iJM}}^{(1)}; F_{\mathit{iJMN}}^{(2)} \big)}{\partial F_{\mathit{iJM}}^{(1)}} \Delta F_{\mathit{iJM}}^{(1)} \\ &+ \frac{\partial \mathscr{W}^{(2)} \big( F_{iJ}; F_{\mathit{iJM}}^{(1)}; F_{\mathit{iJMN}}^{(2)} \big) }{\partial F_{\mathit{iJMN}}^{(2)}} \Delta F_{\mathit{iJMN}}^{(2)} \\ &= P_{iJ} \Big( \nabla _{j} F_{iJ} \bullet \Delta \underline{y}_{j} \Big) + P_{\mathit{iJM}}^{(1)} \Big( \nabla _{j} F_{\mathit{iJM}}^{(1)} \bullet \Delta \underline{y}_{j} \Big) \\ &+ P_{\mathit{iJMN}}^{(2)} \Big( \nabla _{j} F_{\mathit{iJMN}}^{(2)} \bullet \Delta \underline{y}_{j} \Big) \\ &= \Big[ P_{iJ} \nabla _{j} F_{iJ} + P_{\mathit{iJM}}^{(1)} \nabla _{j} F_{\mathit{iJM}}^{(1)} + P_{\mathit{iJMN}}^{(2)} \nabla _{j} F_{\mathit{iJMN}}^{(2)} \Big] \bullet \Delta \underline{y}_{j}, \end{aligned}$$
(A.26)

where \(P_{\mathit{iJMN}}^{(2)}\) is the second gradient of the first Piola-Kirchhoff stress.

Substituting the Fréchet derivatives in Eqs. (A.22)–(A.24) into the above equation, the force density state based on deformation gradients up to the third-order can be obtained as

$$\begin{aligned} \underline{T}_{j} &= \frac{ \Delta \mathscr{W}}{ \Delta \underline{y}_{j}} = P_{iJ} \nabla _{j} F_{iJ} + P_{\mathit{iJM}}^{(1)} \nabla _{j} F_{\mathit{iJM}}^{(1)} + P_{\mathit{iJMN}}^{(2)} \nabla _{j} F_{\mathit{iJMN}}^{(2)} \\ &= \omega P_{jJ} \underline{X}_{M} \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &- \omega P_{jJ} \Big( \underline{X}_{Q} \underline{X}_{O} - \underline{X}_{R} \big( K_{2}^{-1} \big)_{\mathit{RS}} \big( K_{3} \big)_{\mathit{SQO}} \Big) \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOIN}} \big( K_{3} \big)_{\mathit{INM}} \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &- P_{iJ} \big( \nabla _{j} \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORINS}} \Big[ \big( K_{4} \big)_{\mathit{INSM}} \\ &- \big( \widetilde{K}_{5} \big)_{\mathit{INSTU}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{TUVW}} \big( K_{3} \big)_{\mathit{VWM}} \Big] \big( K_{2}^{-1} \big)_{\mathit{MJ}} \\ &+ 2 \omega P_{\mathit{jJM}}^{(1)} \Big( \underline{X}_{Q} \underline{X}_{O} - \underline{X}_{I} \big( K_{2} \big)^{-1}_{\mathit{IS}} \big( K_{3} \big)_{\mathit{SQO}} \Big) \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{QOJM}} \\ &- 2 P_{\mathit{iJM}}^{(1)} \big( \nabla _{j} \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORSIN}} \big( \widetilde{K}_{5} \big)_{\mathit{SINTU}} \big( \widetilde{K}_{4}^{-1} \big)_{\mathit{TUJM}} \\ &+ 6 P_{\mathit{iJMN}}^{(2)} \big( \nabla _{j} \widetilde{L}_{4} \big)_{\mathit{iQOR}} \Big( \widetilde{K}_{6}^{-1} \Big)_{\mathit{QORJMN}}, \end{aligned}$$
(A.27)

with \(\big ( \nabla _{j} \widetilde{L}_{4} \big )_{\mathit{iQOR}}\) given in Eq. (A.25).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chan, W. Higher-Order Peridynamic Material Correspondence Models for Elasticity. J Elast 142, 135–161 (2020). https://doi.org/10.1007/s10659-020-09793-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09793-6

Keywords

Mathematics Subject Classification (2010)

Navigation