Skip to main content
Log in

Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We analyze the stability of naturally curved, inextensible elastic ribbons. In experiments, we first show that a loop formed using a metallic strip can become unstable if its radius is larger than its natural radius of curvature (undercurved case): the loop then folds onto itself into a smaller, multiply-covered loop. Conversely, a multi-covered, overcurved metallic strip can unfold dynamically into a circular configuration having a lower covering index. We analyze these instabilities using a one-dimensional mechanical model for an elastic ribbon introduced recently (Dias and Audoly in J. Elast., 2014), which extends Sadowsky’s developable elastic ribbon model in the presence of natural curvature. Combining linear stability analyses and numerical computations of the post-buckled configurations, we classify the equilibria of the ribbon as a function of the ratio of its natural curvature to its actual curvature. Our ribbon model is formulated in close analogy with classical rod models; this allows us to adapt classical stability methods for rods to the case of a ribbon. The stability of a ribbon is found to differ significantly from that of an anisotropic rod: we attribute this difference to the fact that the tangent twisting modulus of a ribbon can be negative, in contrast to what is possible in the well-studied case of linearly elastic rods. The specific stability properties predicted by the curved ribbon model are confirmed by a finite element analysis of cylindrical shells having a small height-to-radius ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. An inextensible surface is a surface that preserves its metric, hence the length of all curves drawn onto it, upon deformation. We do not consider the case of surfaces that are inextensible along a given set of material directions only, such as surfaces made up of woven networks of inextensible fibres.

  2. By contrast, Kirchhoff’s kinematical hypothesis, which underpins rod models, valid when w and h are comparable, but it does not capture developable configurations well in the limit hw.

  3. To show these equalities, note that the left-hand side of the first equation is the derivative of \(\hat{\mathbf{M}}\) in the moving basis following the virtual motion. The second equation is a classical formula for calculating the bending and twisting strain increments; see for instance [2].

  4. We just found that the stability boundaries for the ribbon model are either rigid-body modes, or out-of-plane modes (b=0) but never in-plane modes (c=0 has no root for g=∞). This confirms the assumption made earlier in Sect. 5.3 that the stability of the ribbon model can be analyzed assuming that the perturbations associated with in-plane modes are zero.

  5. We have ignored the rotational inertia in Eq. (16c) for the balance of angular momentum and, as a result, pure twist modes are associated with zero inertia and an infinite frequency: this is why c=0 makes \((\overline{\varOmega}^{2})_{2}\) infinite in Eq. (26a).

References

  1. Antman, S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Dias, M.A., Audoly, B.: A non-linear rod model for folded elastic strips. J. Mech. Phys. Solids 62, 57–80 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Dias, M.A., Audoly, B.: “Wunderlich, meet Kirchhoff”: a general and unified description of elastic ribbons and thin rods. J. Elast. (2014)

  4. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X.J.: AUTO-07p: continuation and bifurcation software for ordinary differential equations (2007). http://indy.cs.concordia.ca/auto/

  5. Goriely, A.: Twisted elastic rings and the rediscoveries of Michell’s instability. J. Elast. 84, 281–299 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Goriely, A., Shipman, P.: Dynamics of helical strips. Phys. Rev. E 61(4), 4508–4517 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Haijun, Z., Zhong-can, O.Y.: Spontaneous curvature-induced dynamical instability of Kirchhoff filaments: application to DNA kink deformations. J. Chem. Phys. 110, 1247 (1999)

    Article  ADS  Google Scholar 

  8. Hibbitt, D., Karlsson, B., Sorensen, P.: Abaqus manual version 6.11. Tech. rep., Dassault Systèmes (2011)

  9. Hinz, D.F., Fried, E.: Translation and interpretation of Michael Sadowsky’s paper “Theory of elastically bendable inextensible bands with applications to the Möbius band”. J. Elast., 1–11 (2014)

  10. Hinz, D.F., Fried, E.: Translation of Michael Sadowsky’s paper “An elementary proof for the existence of a developable Möbius band and the attribution of the geometric problem to a variational problem”. J. Elast. (2014)

  11. Hinz, D.F., Fried, E.: Translation of Michael Sadowsky’s paper “The differential equations of the Möbius band”. J. Elast., 1–4 (2014)

  12. Hoffman, K.A.: Methods for determining stability in continuum elastic-rod models of DNA. Philos. Trans. R. Soc. Lond. A 362, 1301–1315 (2004)

    Article  ADS  MATH  Google Scholar 

  13. Hoffman, K.A., Manning, R.S., Maddocks, J.H.: Link, twist, energy and the stability of DNA minicircles. Biopolymers 70(2), 145–157 (2003)

    Article  Google Scholar 

  14. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P.H. (ed.) Applications of Bifurcation Theory, pp. 359–384. Academic Press, San Diego (1977)

    Google Scholar 

  15. Manning, R.S., Hoffman, K.A.: Stability of n-covered circles for elastic rods with constant planar intrinsic curvature. J. Elast. 62(1), 1–23 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Michell, J.H.: On the stability of a bent and twisted wire. Messenger Math. 11, 181–184 (1889–1890)

  17. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  18. Sadowsky, M.: Die Differentialgleichungen des Möbiusschen Bandes. In: Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 39 (2. Abt. Heft 5/8), pp. 49–51 (1929)

    Google Scholar 

  19. Sadowsky, M.: Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiusschen Bandes und die Zurückführung des geometrischen Problems auf ein Variationsproblem. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften, physikalisch-mathematische Klasse, 17. Juli 1930, pp. 412–415 (1930). Mitteilung vom 26. Juni

    Google Scholar 

  20. Sadowsky, M.: Theorie der elastisch biegsamen undehnbaren Bänder mit Anwendungen auf das Möbiussche Band. In: Proceedings of the 3rd International Congress of Applied Mechanics, Stockholm, vol. 2, pp. 444–451 (1930)

    Google Scholar 

  21. Seffen, K.A., Pellegrino, S.: Deployment dynamics of tape springs. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455(1983), 1003–1048 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Starostin, E.L., van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6(8), 563–567 (2007)

    Article  Google Scholar 

  23. Starostin, E.L., van der Heijden, G.H.M.: Tension-induced multistability in inextensible helical ribbons. Phys. Rev. Lett. 101, 084301 (2008)

    Article  ADS  Google Scholar 

  24. Thompson, J.M.T., Champneys, A.R.: From helix to localized writhing in the torsional post-buckling of elastic rods. Proc. R. Soc. A, Math. Phys. Eng. Sci. 452(1944), 117–138 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Todres, R.E.: Translation of W. Wunderlich’s “on a developable Möbius band”. J. Elast., 1–12 (2014)

  26. Wunderlich, W.: Über ein abwickelbares Möbiusband. Monatshefte Math. 66(3), 276–289 (1962)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basile Audoly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Audoly, B., Seffen, K.A. Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference. J Elast 119, 293–320 (2015). https://doi.org/10.1007/s10659-015-9520-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9520-y

Keywords

Mathematics Subject Classification

Navigation