Skip to main content
Log in

Twisted Elastic Rings and the Rediscoveries of Michell's Instability

  • Original Paper
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Elastic rings become unstable when sufficiently twisted. This fundamental instability plays an important role in the modeling of DNA mechanics and in cable engineering. In 1962, Zajac computed the value of the critical twist for the instability. This critical value was rediscovered in 1979 by Benham and independently by Le Bret in elastic models for DNA; unstable rings have since become an important example of elastic instabilities in rods both for the development of new methods and in applications. The purpose of this note is to show that the problem had been completely solved by John Henry Michell in 1889 in a rather elegant manner and to reflect on its history and modern developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michell, J.H.: On the stability of a bent and twisted wire. Messenger of Math. 11, 181–184, (1889–1990)

  2. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin Heidelberg New York (1995)

    MATH  Google Scholar 

  3. Benham, C.J.: An elastic model of the large structure of duplex DNA. Bioploymers 18, 609–623 (1979)

    Article  Google Scholar 

  4. Benham, C.J.: Geometry and mechanics of DNA superhelicity. Biopolymers 22, 2477–2495 (1983)

    Article  Google Scholar 

  5. Vologodskii, A.: Topology and Physics of Circular DNA. CRC Press, Boca Raton (1992)

    Google Scholar 

  6. Manning, R.S., Maddocks, J.H., Kahn, J.D.: A continuum rod model of sequence-dependent DNA structure. J. Chem. Phys. 105, 5626–5646 (1996)

    Article  ADS  Google Scholar 

  7. Silk, W.K.: On the curving and twining of stems. Environmental Exp. Bot. 29, 95–109 (1989)

    Article  Google Scholar 

  8. Goriely, A., Tabor, M.: Spontaneous helix-hand reversal and tendril perversion in climbing plants. Phys. Rev. Lett. 80, 1564–1567 (1998)

    Article  ADS  Google Scholar 

  9. Goldstein, R.E., Goriely, A., Hubber, G., Wolgemuth, C.: Bistable helices. Phys. Rev. Lett. 84, 1631–1634 (2000)

    Article  ADS  Google Scholar 

  10. Maddocks, J.H.: Bifurcation theory, symmetry breaking and homogenization in continuum mechanics descriptions of DNA. In: Givoli, M.J., Grote, D., Papanicolaou, G. (eds.) A Celebration of Mathematical Modeling: The Joseph B. Keller Anniversary Volume, pp. 113–136. Kluwer (2004)

  11. Thomson, W.T., Tait, P.G.: Treatise on Natural Philosophy. Cambridge (1867)

  12. Michell, J.H.: The small deformation of curves and surfaces with applications to the vibration of a helix and a circular ring. Messenger of Math. 19, 68–82 (1889–90)

  13. Cherry, T.M.: J.H. Michell. Australian dictionary of biography 19, 494–495 (1986) (http://gutenberg.net.au/dictbiog/0-dict-biogMa-Mo.html)

  14. Tuck, E.O.: The wave resistance formula of J.H. Michell (1898) and its significance to recent research in ship hydrodynamics. J. Austral. Math. Soc. Ser. B 30, 365–377 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Michell, A.G.M.: John Henry Michell Obituary Notices of Fellows of the Royal Society 3, 363–382 (1941)

  16. Michell, J.H., Michell, A.G.M., Niedenfuhr, F.W., Radok, J.R.M.: The Collected Mathematical Works of J.H. and A.G.M. Michell. Noordhoff, Groningen, Netherlands (1964)

    Google Scholar 

  17. Basset, A.B.: On the deformation of thin elastic wires. Amer. J. Math. 17, 281–317 (1895)

    Article  MathSciNet  Google Scholar 

  18. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1892)

    MATH  Google Scholar 

  19. Antman, S.S., Kenney, C.S.: Large buckled states of nonlinearly elastic rods under torsion, thrust and gravity. Arch. Ration. Mech. Analysis 84, 289–338 (1981)

    ADS  MathSciNet  Google Scholar 

  20. Zajac, E.E.: Stability of two planar loop elasticas. ASME J. Applied Mech. 29, 136–142 (March 1962)

    MATH  MathSciNet  Google Scholar 

  21. Fuller, F.B.: The writhing number of a space curve. Proc. Nat. Acad. Sci. 68, 815–819 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Fuller, F.B.: Decomposition of the linking number of a closed ribbon: A problem from molecular biology. Proc. Natl. Acad. Sci. 78, 3557–3561 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  23. Benham, C.J.: Elastic model of supercoiling. Proc. Nat. Acad. Sci. USA 74, 2397–2401 (1977)

    Article  ADS  Google Scholar 

  24. LeBret, M.: Catastrophic variations of twist and writhing of circular DNA with constraint? Biopolymers 18, 1709–1725 (1979)

    Article  Google Scholar 

  25. LeBret, M.: Twist and writhing in short circular DNA according to first-order elasticity. Biopolymers 23, 1835–1867 (1984)

    Article  Google Scholar 

  26. Benham, C.J.: Onset of writhing in circular elastic polymers. Phys. Rev. A 39, 2582–2586 (1989)

    Article  ADS  Google Scholar 

  27. Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I.: On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Rational Mech. Anal. 121, 339–359 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  28. Tobias, I., Olson, W.K.: The effect of intrinsic curvature on supercoiling – Predictions of elasticity theory. Biopolymers 33, 639–646 (1993)

    Article  Google Scholar 

  29. Yang, Y., Tobias, I., Olson, W.K.: Finite element analysis of DNA supercoiling. J. Chem. Phys. 98, 1673–1686 (1993)

    Article  ADS  Google Scholar 

  30. Klapper, I., Tabor, M.: A new twist in the kinematics and elastic dynamics of thin filaments and ribbons. J. Phys. A 27, 4919–4924 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Schlick, T.: Modeling superhelical DNA: Recent analytical and dynamical approaches. Curr. Opin. Struct. Biol. 5, 245–262 (1995)

    Article  Google Scholar 

  32. Aldinger, J., Klapper, I., Tabor, M.: Formulae for the calculation and estimation of writhe.J. Knot Theory 4, 243–372 (1995)

    MathSciNet  Google Scholar 

  33. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments I: Dynamical instabilities. Physica D 105, 20–44 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Liu, G.H., Schlick, T., Olson, A.J., Olson, W.K.: Configurational transitions in Fourier series-represented DNA supercoils. Biophys. J. 73, 1742–1762 (1997)

    Google Scholar 

  35. Westcott, T.P., Tobias, I., Olson, W.K.: Modeling self-contact forces in the elastic theory of DNA supercoiling. J. Chem. Phys. 107, 3967–3980 (1997)

    Article  ADS  Google Scholar 

  36. Wiggins, C.H.: Biopolymer mechanics: Stability, dynamics, and statistics. Math. Methods Appl. Sci. 24, 1325–1335 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. II. Nonlinear analysis. Physica D 105, 45–61 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. III. Instabilities of helical rods. Proc. Roy. Soc. London (A) 453, 2583–2601 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. IV. The spontaneous looping of twisted elastic rods. Proc. Roy. Soc. London (A) 455, 3183–3202 (1998)

    Article  MathSciNet  Google Scholar 

  40. Manning, R.S., Hoffman, K.A.: Stability of \(n\)-covered circles for elastic rods with constant planar intrinsic curvature. J. Elasticity 62, 456–479 (2001)

    Article  MathSciNet  Google Scholar 

  41. Hoffman, K.A., Manning, R.S., Maddocks, J.H.: Link, twist, energy, and the stability of DNA minicircles. Biopolymers 70, 145–157 (2003)

    Article  Google Scholar 

  42. Lembo, M.: On the stability of elastic annular rods. Int. J. Solids. Structures 40, 317–330 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Hoffman, K.A.: Methods for determining stability in continuum elastic rod-models of DNA. Phil. Trans. R. Soc. Lond. A 362, 1301–1315 (2004)

    Article  MATH  ADS  Google Scholar 

  44. Ivey, T.A., Singer, D.A.: Knot types, homotopies and stability of closed elastic rods. Proc. London Math. Soc. 3, 429–450 (1999)

    Article  MathSciNet  Google Scholar 

  45. Tobias, I., Coleman, B.D., Lembo, M.: A class of exact dynamical solutions in the elastic rod model of DNA with implications for the theory of fluctuations in the torsional motion of plasmids. J. Chem. Phys. 105, 2517–2526 (1996)

    Article  ADS  Google Scholar 

  46. Qian, H., White, J.H.: Terminal twist induced continuous writhe of a circular rod with intrinsic curvature. J. Biomol. Struct. Dyn. 16, 663–669 (1998)

    Google Scholar 

  47. Haijun, Z., Zhong can, O.-Y.: Spontaneous curvature-induced dynamical instability of Kirchhoff filaments: Application to DNA kink deformations. J. Chem. Phys. 110, 1247–1251 (1999)

    Article  ADS  Google Scholar 

  48. Shipman, P., Goriely, A.: On the dynamics of helical strips. Phys. Rev. E 61, 4508–4517 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  49. Han, W., Lindsay, S.M., Dlakic, M., Harrington, R.E.: Kinked DNA. Nature 386, 563 (1997)

    Article  ADS  Google Scholar 

  50. Goriely, A., Nizette, M., Tabor, M.: On the dynamics of elastic strips. J. Nonlinear Sci. 11, 3–45 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Chouaieb, N., Maddocks, J.H.: Kirchhoff's problem of helical equilibria of uniform rods. J. Elast. 77, 221–247 (2005)

    Article  MathSciNet  Google Scholar 

  52. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. Nonlinear Dyn. 21, 101–133 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  53. Tobias, I., Swigon, D., Coleman, B.D.: Elastic stability of DNA configurations. I. General theory. Phys. Rev. E 61, 747–758 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  54. Coleman, B.D., Swigon, S., Tobias, I.: Elastic stability of DNA configurations. II. Supercoiled plasmids with self-contact. Phys. Rev. E 61, 759–770 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  55. Coleman, B.D., Swigon, D.: Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. J. Elast. 60, 173–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. Starostin, E.L.: Equilibrium configurations of a thin elastic rod with self-contacts. PAMM, Proc. Appl. Math. Mech. 1, 137–138 (2002)

    Article  MATH  Google Scholar 

  57. Wolgemuth, C.W., Goldstein, R.E., Powers, T.R.: Dynamic supercoiling bifurcation of growing elastic filaments. Phys. D 190, 266–289 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  58. Domokos, G., Healey, T.: Hidden symmetry of global solutions in twisted elastic rings. J. Nonlinear Sci. 11, 47–67 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. Thompson, J.M.T., van der Heijden, G.H.M., Neukirch, S.: Super-coiling of DNA plasmids: Mechanics of the generalized ply. Proc. Roy. Soc. Lond. A 458, 959–985 (2001)

    Google Scholar 

  60. Panyukov, S., Rabin, Y.: Fluctuating elastic rings: Statics and dynamics. Phys. Rev. E. 64:#0011909 (2001)

    Article  ADS  Google Scholar 

  61. Tobias, I.: A theory of thermal fluctuations in DNA miniplasmids. Biophysical J. 74, 2545–2553 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Goriely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goriely, A. Twisted Elastic Rings and the Rediscoveries of Michell's Instability. J Elasticity 84, 281–299 (2006). https://doi.org/10.1007/s10659-006-9055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9055-3

Key words

Navigation