Skip to main content
Log in

Identification and colonization dynamics of an antagonistic endophytic bacterium 262XY2′ against Pseudomonas syringae causing tomato leaf spot disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Endophytic bacteria have attracted a great attention because they produce chemicals that increase the resistance of host plants against diseases. In the current study, 40 strains of endophytic bacteria from Kobreasia capillifolia of an alpine grassland were screened for the inhibitory effect against the tomato leaf pathogen Pseudomonas syringae. The endophytic bacterium strain 262XY2’ developed a clear inhibition zone of growth with a bacteriostatic band width of 0.67 cm against P. syringae on the cultural plates. The strain 262XY2’ also showed an inhibitory activity to Bipolaris sorokiniana, Stysanus stemonitis, Alternaria soloni, Botrytis cinerea, Fusarium solani and F. oxysporum. It was able to fix nitrogen, dissolve phosphorus and produce indole 3-acetic acid (IAA). Based on morphological characteristics and the molecular sequence analyses of 16S rRNA and gyrB genes, the 262XY2’ strain was identified as Bacillus subtilis. B. subtilis 262XY2’ strain tagged with the green fluorescence protein (GFP) was found to colonize stably in the roots, stems and leaves of tomato plants, and could be re-isolated from the rhizosphere soil after 0 to 60 days of inoculation. Moreover, it also exhibited a control effect of 48.55% against tomato leaf spot caused by P. syringae. Our results indicate that the antagonistic bacteria B. subtilis 262XY2’ has the potential to be used as a biocontrol agent for tomato leaf spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbamondi, G. R., Tommonaro, G., Weyens, N., Thijs, S., Sillen, W., Gkorezis, P., Iodice, C., Rangel, W. D. M., Nicolaus, B., & Vangronseld, J. (2016). Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chemical and Biological Technologies in Agriculture, 3. https://doi.org/10.1186/s40538-015-0051-3.

  • Alexandrova, M., Bazzi, C., & Lameri, P. (2002). Bacillus subtilis strain BS-F3: Colonization of pear of organs and its action as a biocontrol agent. Acta Horticulturae, 590, 291–297. https://doi.org/10.17660/ActaHortic.2002.590.43.

    Article  Google Scholar 

  • Alsultan, W., Vadamalai, G., Khairulmazmi, A., Saud, H. M., Al-Sadi, A. M., Rashed, O., Jaaffar, A. K. M., & Nasehi, A. (2019). Isolation, identification and characterization of endophytic bacteria antagonistic to Phytophthora palmivora causing black pod of cocoa in Malaysia. European Journal of Plant Pathology, 155, 1077–1091.

    Article  CAS  Google Scholar 

  • Anith, K. N., Radhakrishnan, N. V., & Manomohandas, T. P. (2003). Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiological Research, 158, 91–97.

    Article  CAS  Google Scholar 

  • Barman, D., & Dkhar, M. S. (2019). Plant growth-promoting potential of endophytic bacteria isolated from Costusspeciosus in tropical deciduous forest of eastern Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 841–852. https://doi.org/10.1007/s40011-018-0998-5.

    Article  CAS  Google Scholar 

  • Boone, D. R., Castenholz, R. W., Boone, D. R., & Castenholz, R. W. (2001). Bergey's Manual of Systematic Bacteriology (Second Edition, Volum 1). Springer Publication.

  • Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey's Manual of Systematic Bacteriology (Second Edition, Volum 2 Part B, C). Springer Publication.

  • Bric, J. M., Bostock, R. M., & Silverstone, S. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538.

    Article  CAS  Google Scholar 

  • Cao, Y., Zhang, Z. H., Ling, N., Yuan, Y. J., Zheng, X. Y., Shen, B., & Shen, Q. R. (2011). Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils, 47, 495–506.

    Article  CAS  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., & Prasher, D. (1994) Green fluorescent protein as a marker for gene expression. Science, 263, 802–805

  • Chiu, W. L., Niwa, Y., Zeng, W. K., Hirano, T., Kobayashi, H., & Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Current Biology, 6, 325–330. https://doi.org/10.1016/S0960-9822(02)00483-9.

    Article  CAS  PubMed  Google Scholar 

  • Cocking, E. C. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant and Soil, 252, 169–175.

    Article  CAS  Google Scholar 

  • Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669–678

  • Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173, 33–38.

    Article  CAS  Google Scholar 

  • De Vos, P., Garrity, G. M., & Jones, D. (2009). Bergey’s Manual of Systematic Bacteriology (Second Edition, Volum 3). Springer print.

  • Eberl, L., Givskov, M., Poulsen, L. K., & Molin, S. (1997). Use of bioluminescence for monitoring the viability of individual Pseudomonas putida KT2442 cells. FEMS Microbiology Letters, 149, 133–140. https://doi.org/10.1016/S0378-1097(97)00070-0.

    Article  CAS  Google Scholar 

  • Gao, S., Wu, H., Wang, W., Yang, Y., Xie, S., Xie, Y., & Gao, X. (2013). Efficient colonization and Harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis. Letters in Applied Microbiology, 57, 526–533.

    Article  CAS  Google Scholar 

  • Gao, S. F., Wu, H. J., Yu, X. F., Qian, L. M., & Gao & X.W. (2016). Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biological Control, 98, 11–17. https://doi.org/10.1016/j.biocontrol.2016.03.011.

    Article  CAS  Google Scholar 

  • Garlick, J. A., & Taichman, L. B. (1992). A model to study the fate of genetically-marked keratinocytes in culture. Journal of Dermatology, 19, 797–801. https://doi.org/10.1111/j.1346-8138.1992.tb03784.x.

    Article  CAS  Google Scholar 

  • Ge, X. Y., He, C. E., Li, T., & Ouyang, Z. (2015). Effect of Bacillus subtilis and Pseudomonas fluorescens on growth of greenhouse tomato and rhizosphere microbial community. Journal of Northeast Agricultural University (English Edition), 22, 32–42.

    Article  Google Scholar 

  • Gilbertson, A. W., Fitch, M. W., Burken, J. G., & Wood, T. K. (2007). Transport and survival of GFP-tagged root-colonizing microbes: Implications for rhizodegradation. European Journal of Soil Biology, 43, 224–232. https://doi.org/10.1016/j.ejsobi.2007.02.005.

    Article  CAS  Google Scholar 

  • Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indolacetic acid. Plant Physiology, 26, 192–195.

    Article  CAS  Google Scholar 

  • Guo, Q. Q, Li, H. E., Qian, Z. Q., Lu, J., & Zheng, W. L. (2021). Comparative study on the chloroplast genomes of five Larix species from the Qinghai-Tibet Plateau and the screening of candidate DNA markers. https://doi.org/10.1007/s11676-020-01279-4.

  • Hao, B. Q., Ma, L. P., & Qiao, X. W. (2010). Colonization ability of plant growth promoting Bacillus B96-II-gfp labeled with GFP. Chinese Journal of Eco-Agriculture, 18, 861–865.

    Article  Google Scholar 

  • Hosseine, A., Mehrdad, M. M., Hamid, K., Mohammad, H., Reza, M., & Nastaran, S. B. (2015). Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI / R and gyrB genes. Journal of Infection and Public Health, 8, 314–322.

    Article  Google Scholar 

  • Krzyzanowska, D., Obuchowski, M., Bikowski, M., Rychlowski, M., & Jafra, S. (2012). Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sensors, 12, 17608–17619.

    Article  CAS  Google Scholar 

  • Li, S. Q., Zhang, N., Zhang, Z. H., Luo, J., Shen, B., Zhang, R. F., & Shen, Q. R. (2013). Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biology and Fertility of Soils, 49, 295–303. https://doi.org/10.1007/s00374-012-0718-x.

    Article  Google Scholar 

  • Li, X., Sun, Z., Shao, S., Zhang, S., Ahammed, G. J., Zhang, G., Jiang, Y., Zhoul, J., Xia, X., Zhou, Y., Yu, J., & Sh, K. (2014). Tomato–Pseudom,onas syringae interactions under elevated CO2 concentration: the role of stomata. Journal of Experimental Botany, 66, 307–316.

    Article  Google Scholar 

  • Li, L. L., Tan, J. J., Chen, F., Chen, F. M., & Hao, D. J. (2018). Colonization of Bacillus cereus NJSZ-13, a species with nematicidal activity in Masson pine (Pinus massoniana lamb.). Journal of Forestry Research, 31, 1025–1033. https://doi.org/10.1007/s11676-018-0823-2.

    Article  CAS  Google Scholar 

  • Long, Y., Yin, X., Wang, M., Wu, X., & Li, M. (2017). Effects of sulfur on kiwifruit canker caused by pseudomonas syringae pv. actinidae. Bangladesh Journal of Botany, 46(3), 1183–1192.

    Google Scholar 

  • Malviya, N., Yandigeri, M. S., Yadav, A. K., Yadav, A. K., Solanki, M. K., & Arora, D. K. (2014). Isolation and characterization of novel alkali-halophilic actinomycetes from the Chilika brackish water lake, India. Annals of Microbiology, 64, 1829–1838. https://doi.org/10.1007/s13213-014-0831-1.

    Article  CAS  Google Scholar 

  • Mintoo, M. N., Mishra, S., & Dantu, P. K. (2019). Isolation and characterization of endophytic Bacteria from Piper longum. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 1447–1454.

    Article  CAS  Google Scholar 

  • Morin, X., Daneman, R., Zavortink, M., & Chia, W. (2001). A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 98, 15050–15055. https://doi.org/10.1073/pnas.261408198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougou, I., & Boughallebmhamdi, N. (2016). Detection, survival, and source of inoculum of Pseudomonas syringae pv. syringae from weeds and plant debris in relation to epidemiology of bacterial Citrus blast and black pit in Tunisia. Microbiology Research Journal International. https://doi.org/10.9734/BMRJ/2016/27954.

  • Radha, T. K., & Rao, D. L. N. (2014). Plant growth promoting Bacteria from cow dung based biodynamic preparations. Indian Journal of Microbiology, 54, 413–418.

    Article  CAS  Google Scholar 

  • Rekha, K., Kumar, R. M., Ilango, K., Rex, A., & Usha, B. (2018). Transcriptome profiling of rice roots in early response to Bacillus subtilis (RR4) colonization. Botany, 96, 749–765

  • Schulz, B., Boyle, C., Draeger, S., Römmert, A. K., & Krohn, K. (2002). Endophytic fungi: A source of novel biologically active secondary metabolites. Mycological Research, 106, 996–1004.

    Article  CAS  Google Scholar 

  • Shi, X. X., Zhou, R. J., Wang, Q. Q., Chang, T. F., Feng, S. S., & Du, G. Q. (2015). Characteristics of pollen from transgenic lines of apple carrying the exogenous CpTI gene. Horticultural Plant Journal, 1, 3–10.

    Google Scholar 

  • Smirnova, D. V., & Ugarova, N. N. (2016). Firefly luciferase-based fusion proteins and their applications in bioanalysis. Photochemistry and Photobiology, 93, 436–447.

    Article  Google Scholar 

  • Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857.

    Article  CAS  Google Scholar 

  • Sun, S. X., Chen, Y. P., Cheng, J. J., Zheng, Z. C., & Lan, Z. L. (2018). Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots. Folia Microbiologica, 63, 789–802.

    Article  CAS  Google Scholar 

  • Sun, Z., Yang, L. M., Han, M., Han, Z. M., Yang, L., Cheng, L., Yang, X., & 7 Lv, Z.L. (2019). Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biological Control, 138. https://doi.org/10.1016/j.biocontrol.2019.104048.

  • Tao, S. Y., Wu, Z. S., Wei, M. M., Liu, X. C., He, Y. H., & Ye, B. C. (2019). Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement. Canadian Journal of Microbiology, 65, 333–342. https://doi.org/10.1139/cjm-2018-0333.

    Article  CAS  PubMed  Google Scholar 

  • Tian, T., Qi, X. C., Wang, Q., & Mei, R. H. (2004). Colonization study of GFP-tagged Bacillus strains on wheat surface. Acta Phytopathologica Sinica, 34, 346–351.

    Google Scholar 

  • Venkatesh, B., Arifuzzaman, M., Mori, H., Suzuki, S., Taguchi, T., & Ohmiya, Y. (2005). Use of GFP tags to monitor localization of different luciferases in E. coli. Photochemical & Photobiological Sciences, 4, 740–743.

    Article  CAS  Google Scholar 

  • von der Weid, I., Artursson, V., Seldin, L., & Jansson, J. K. (2005). Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World Journal of Microbiology and Biotechnology, 21, 1591–1597. https://doi.org/10.1007/s11274-005-8123-3.

    Article  Google Scholar 

  • Wang, Q. C., & Ma, Z. W. (2004). Heavy metals in chemical fertilizer and environmental risks. Rural Eco-Environment, 20, 62–64.

    Google Scholar 

  • Wang, Y., Yang, C. D., Yao, Y. L., Wang, Y. Q., Zhang, Z. F., & Xue, L. (2016). The diversity and potential function of endophytic bacteria isolated from Kobreasia capillifolia at alpine grasslands on the Tibetan plateau, China. Journal of Integrative Agriculture, 15, 2153–2162.

    Article  Google Scholar 

  • Wang, Y., Yang, C. D., Xue, L., Zhang, Z. F., Feng, Z. H., & Zhang, J. L. (2017). Bacillus mojavensis ZA1 labeling with GFP and its functional stability. Journal of Plant Protection, 44, 657–663.

    CAS  Google Scholar 

  • Wang, X. F., Xie, H. Q., Ku, Y. L., Yang, X. N., Chen, Y. L., Yang, N., Mei, X. L., & Cao, C. L. (2019). Chemotaxis of Bacillus cereus YL6 and its colonization of Chinese cabbage seedlings. Plant and Soil, 447, 413–430. https://doi.org/10.1007/s11104-019-04344-y.

    Article  CAS  Google Scholar 

  • Zhang, N., Wu, K., He, X., Li, S. Q., Zhang, Z. H., Shen, B., Yang, X. M., Zhang, R. F., & Huang, Q. W. (2011). A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and Soil, 344, 87–97.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhou, Y. Y., Li, Y., Fu, X. C., & Wang, Q. (2017). Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Protection, 96, 173–179.

    Article  Google Scholar 

  • Zhao, Q. Y., Shen, Q. R., Ran, W., Xiao, T. J., Xu, D. B., & Xu, Y. C. (2011). Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.). Biology and Fertility of Soils, 47, 507–514. https://doi.org/10.1007/s00374-011-0558-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate for the proofreading by JJ Scientific Consultant Ltd., UK (https://mp.weixin.qq.com/s/sw7CQZhwDng8J21z37QM3w).

Funding

This work was supported by the project of National Natural Science Foundation of China (No: 31660148) to Chengde Yang. Program of Introducing Talents to Chinese Universities (111 Program No.: D20023) to JJZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengde Yang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Feng, Z., Wang, Y. et al. Identification and colonization dynamics of an antagonistic endophytic bacterium 262XY2′ against Pseudomonas syringae causing tomato leaf spot disease. Eur J Plant Pathol 161, 233–245 (2021). https://doi.org/10.1007/s10658-021-02318-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02318-4

Keywords

Navigation