Skip to main content
Log in

Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In the current study, the performance of three endophytic actinomycetes identified as Actinoplanes campanulatus, Micromonospora chalcea and Streptomyces spiralis previously shown to reduce seedling damping-off, and root and crown rots of mature cucumber (Cucumis sativus) caused by Pythium aphanidermatum in pots under greenhouse conditions were further evaluated to determine their potential as biological control agents and as plant growth promoters in the field under the conditions of commercial production of cucumbers in the United Arab Emirates (UAE). When applied individually or in combination to cucumber seedlings, the three isolates significantly promoted plant growth and yield and reduced seedling damping-off and root and crown rots of mature cucumber plants. Individually the performance level of S. spiralis was relatively the best followed by A. campanulatus and then by M. chalcea. The three isolates (which were not inhibitory to each other) performed better, both as biological control agents as well as plant growth promoters, when applied together than when they were inoculated individually. The ability of these three isolates to colonize the internal tissues of roots, stems and leaves under field conditions, and to persist up to 8 weeks after seedling inoculation, showed that they can easily adapt to an endophytic habit systemically within healthy cucumber plants. As the three endophytic actinomycete isolates also colonized the rhizosphere and showed outstanding rhizosphere competency it is clear that they are facultative and not obligate endophytes. The success with the three inoculants indicated that they could well be used in place of the fungicide metalaxyl which is currently recommended for the management of Pythium diseases in the UAE. This is the first successful field use of endophytic actinomycetes as promising plant growth promoters and biological control agents against Pythium diseases of cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, J. S., & Baker, R. (1987). Rhizosphere competence of Trichoderma harzianum. Phytopathology, 77, 182–189.

    Article  Google Scholar 

  • Arshad, M., & Frankenberger, W. T., Jr. (1998). Plant growth regulating substances in the rhizosphere: microbial production and functions. Advances in Agronomy, 62, 45–151.

    Article  CAS  Google Scholar 

  • Cao, L., Qiu, Z., Dai, X., Tan, H., Lin, Y., & Zhou, S. (2004a). Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminate) plants and their activities against Fusarium oxysporum f.sp. cubense. World Journal of Microbiology and Biotechnology, 20, 501–504.

    Article  CAS  Google Scholar 

  • Cao, L., Qiu, Z., You, J., Tan, H., & Zhou, S. (2004b). Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Letters in Applied Microbiology, 39, 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Cao, L., Qiu, Z., You, J., Tan, H., & Zhou, S. (2005). Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiology Letters, 247, 147–152.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Hoitink, H. A. J., & Schmitthenner, A. F. (1987). Factors affecting suppression of Pythium damping-off in container media amended with composts. Phytopathology, 77, 755–760.

    Article  Google Scholar 

  • Conn, V. M., Franco, C. M. M., & Walker, M. (2006). Priming of systemic defence pathways by endophytic actinomycetes. Phytopathology, 96, S26.

    Google Scholar 

  • Coombs, J. T., Michelsen, P. P., & Franco, C. M. M. (2004). Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biological Control, 29, 359–366.

    Article  Google Scholar 

  • Costacurta, A., & Vanderleyden, J. (1995). Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology, 21, 1–18.

    Article  PubMed  Google Scholar 

  • de Boer, M., Van der Sluis, I., Van Loon, L. C., & Bakker, P. A. H. M. (1999). Combining fluorescent Pseudomonas sp. strains to enhance suppression of Fusarium wilt of radish. European Journal of Plant Pathology, 105, 201–210.

    Article  Google Scholar 

  • Dias, A. C. F., Costa, F. E. C., Andreote, F. D., Lacava, P. T., Teixeira, M. A., Assumpcao, L. C., et al. (2009). Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World Journal of Microbiology and Biotechnology, 25, 189–195.

    Article  CAS  Google Scholar 

  • El-Tarabily, K. A. (2003). An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupin caused by Plectosporium tabacinum. Australian Journal of Botany, 51, 257–266.

    Article  Google Scholar 

  • El-Tarabily, K. A. (2006). Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Canadian Journal of Botany, 84, 211–222.

    Article  CAS  Google Scholar 

  • El-Tarabily, K. A., & Sivasithamparam, K. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry, 38, 1505–1520.

    Article  CAS  Google Scholar 

  • El-Tarabily, K. A., Hardy, G E St J, Sivasithamparam, K., Hussein, A. M., & Kurtböke, I. D. (1997). The potential for the biological control of cavity spot disease of carrots caused by Pythium coloratum by streptomycete and non-streptomycete actinomycetes in Western Australia. New Phytologist, 137, 495–507.

    Article  Google Scholar 

  • El-Tarabily, K. A., Nassar, A. H., Hardy, G E St J, & Sivasithamparam, K. (2003). Fish emulsion as a food base for rhizobacteria promoting growth of radish (Raphanus sativus L. var. sativus) in a sandy soil. Plant and Soil, 252, 397–411.

    Article  CAS  Google Scholar 

  • El-Tarabily, K. A., Nassar, A. H., Hardy, G E St J, & Sivasithamparam, K. (2009). Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. Journal of Applied Microbiology, 106, 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Filonow, A. B., & Lockwood, J. L. (1985). Evaluation of several actinomycetes and the fungus Hyphochytrium catenoides as biocontrol agents for Phytophthora root rot of soybean. Plant Disease, 69, 1033–1036.

    Google Scholar 

  • Franco, C. M. M., Michelsen, P., Percy, N., Conn, V., Listiana, E., Moll, S., et al. (2007). Actinobacterial endophytes for improved crop performance. Australasian Journal of Plant Pathology, 36, 524–531.

    Article  Google Scholar 

  • Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895–914.

    Article  CAS  Google Scholar 

  • Hamdali, H., Hafidi, M., Virolle, M. J., & Ouhdouch, Y. (2008). Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World Journal of Microbiology and Biotechnology, 24, 2565–2575.

    Article  CAS  Google Scholar 

  • Khan, N. I., Filonow, A. B., Singleton, L. L., & Payton, M. E. (1993). Parasitism of oospores of Pythium spp. by strains of Actinoplanes spp. Canadian Journal of Microbiology, 39, 964–972.

    Article  Google Scholar 

  • Khan, S. A., Hamayun, M., Kim, H., Yoon, H., Lee, I., & Kim, J. (2009). Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World Journal of Microbiology and Biotechnology, 25, 829–833.

    Article  CAS  Google Scholar 

  • Kobayashi, D. Y., & Palumbo, J. D. (2000). Bacterial endophytes and their effects on plants and uses in agriculture. In C. W. Bacon & J. F. White (Eds.), Microbial endophytes (pp. 199–233). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Krechel, A., Faupel, A., Hallmann, J., Ulrich, A., & Berg, G. (2002). Potato associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Canadian Journal of Microbiology, 48, 772–786.

    Article  CAS  PubMed  Google Scholar 

  • Küster, E., & Williams, S. T. (1964). Production of hydrogen sulphide by streptomycetes and methods for its detection. Applied Microbiology, 12, 46–52.

    Google Scholar 

  • Liu, B., Qiao, H., Huang, L., Buchenauer, H., Han, Q., Kang, Z., et al. (2009). Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biological Control, 49, 277–285.

    Article  Google Scholar 

  • Mao, W., Lewis, J. A., Lumsden, R. D., & Hebbar, K. P. (1998). Biocontrol of selected soil-borne diseases of tomato and pepper plants. Crop Protection, 17, 535–542.

    Article  Google Scholar 

  • Martin, F. N., & Loper, J. E. (1999). Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Critical Reviews in Plant Sciences, 18, 111–181.

    Article  CAS  Google Scholar 

  • McInroy, J., & Kloepper, J. W. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil, 173, 337–342.

    Article  CAS  Google Scholar 

  • Misaghi, I. J., & Donndelinger, I. J. (1990). Endophytic bacteria in symptom-free cotton plants. Phytopathology, 80, 808–811.

    Article  Google Scholar 

  • Mucciarelli, M., Scannerini, S., Bertea, C., & Maffei, M. (2003). In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytologist, 158, 579–591.

    Article  Google Scholar 

  • Musson, G., McInroy, J. A., & Kloepper, J. W. (1995). Development of delivery systems for introducing endophytic bacteria into cotton. Biocontrol Science and Technology, 5, 407–416.

    Article  Google Scholar 

  • Naik, B. S., Shashikala, J., & Krishnamurthy, Y. L. (2009). Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiological Research, 164, 290–296.

    Article  CAS  PubMed  Google Scholar 

  • Nassar, A. H., El-Tarabily, K. A., & Sivasithamparam, K. (2003). Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Regulation, 40, 97–106.

    Article  CAS  Google Scholar 

  • Nassar, A. H., El-Tarabily, K. A., & Sivasithamparam, K. (2005). Promotion of plant growth by auxin-producing yeast isolate of Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biology and Fertility of Soils, 42, 97–108.

    Article  CAS  Google Scholar 

  • Nautiyal, C. S. (1997). A method for selection and characterization of rhizosphere-competent bacteria of chickpea. Current Microbiology, 34, 12–17.

    Article  CAS  PubMed  Google Scholar 

  • Pleban, S., Ingel, F., & Chet, I. (1995). Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. European Journal of Plant Pathology, 101, 665–672.

    Article  Google Scholar 

  • Quecine, M. C., Araujo, W. L., Marcon, J., Gai, C. S., Azevedo, J. L., & Pizzirani-Kleiner, A. A. (2008). Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Letters in Applied Microbiology, 47, 486–491.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, R., Joshi, A. A., & Ghanekar, M. P. (2009). Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology, 25, 47–55.

    Article  Google Scholar 

  • Rosenblueth, M., & Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interaction, 19, 827–837.

    Article  CAS  Google Scholar 

  • Sardi, P., Saracchi, M., Quaroni, S., Petrolini, B., Borgonovi, G. E., & Merli, S. (1992). Isolation of endophytic Streptomyces strains from surface-sterilized roots. Applied and Environmental Microbiology, 58, 2691–2693.

    CAS  PubMed  Google Scholar 

  • Selvakumar, G., Kundu, S., Gupta, A. D., Shouche, Y. S., & Gupta, H. (2008). Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effects on wheat seedling growth. Current Microbiology, 56, 134–139.

    Article  CAS  PubMed  Google Scholar 

  • Sgroy, V., Cassan, F., Masciarelli, O., Del Papa, M. F., Lagares, A., & Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 85, 371–381.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology, 89, 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. E. (1957). Inhibition of Fusarium oxysporum f. lycopersici by a species of Micromonospora isolated from tomato. Phytopathology, 47, 429–432.

    Google Scholar 

  • Souza, J. T., de Bailey, B. A., Pomella, A. W. V., Erbe, E. F., Murphy, C. A., Bae, H., et al. (2008). Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biological Control, 46, 36–45.

    Article  Google Scholar 

  • Stanghellini, M. E., & Phillips, J. M. (1975). Pythium aphanidermatum: its occurrence and control with pyroxychlor in the Arabian desert at Abu Dhabi. Plant Disease Reporter, 59, 559–563.

    CAS  Google Scholar 

  • Stone, J. K., Bacon, C. W., & White, J. F., Jr. (2000). An overview of endophytic microbes: Endophytism defined. In C. W. Bacon & J. F. White (Eds.), Microbial endophytes (pp. 3–29). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Strzelczyk, E., & Pokojska, A. (1984). Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from the soil and the mycorrhizosphere of pine (Pinus silvestris L.). Plant and Soil, 81, 185–194.

    Article  CAS  Google Scholar 

  • Sturz, A. V., Christie, B. R., & Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19, 1–30.

    Article  Google Scholar 

  • Valois, D., Fayad, K., Barbasubiye, T., Garon, M., Déry, C., Brzezinski, R., et al. (1996). Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Applied and Environmental Microbiology, 62, 1630–1635.

    CAS  PubMed  Google Scholar 

  • van der Plaats-Niterink, A. J. (1981). Monograph of the genus Pythium. Studies in Mycology Baarn; Centraalbureau voor Schimmelcultures, 21, 1–242.

    Google Scholar 

  • Verma, V. C., Gond, S. K., Kumar, A., Mishra, A., Kharwar, R. N., & Gange, A. C. (2009). Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microbial Ecology, 57, 749–756.

    Article  PubMed  Google Scholar 

  • Wang, H., Wen, K., Zhao, X., Wang, X., Li, X., & Hong, H. (2009). The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Protection, 28, 634–639.

    Article  Google Scholar 

  • Williams, S. T., & Wellington, E. M. H. (1982). Actinomycetes. In A. L. Page, R. H. Miller, & O. R. Keency (Eds.), Methods of soil analysis, chemical and microbiological properties. Part 2 (pp. 969–987). Madison: American Society of Agronomy/Soil Science Society of America.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the United Arab Emirates University Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled A. El-Tarabily.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Tarabily, K.A., St. J. Hardy, G.E. & Sivasithamparam, K. Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128, 527–539 (2010). https://doi.org/10.1007/s10658-010-9689-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9689-7

Keywords

Navigation