Skip to main content
Log in

Distribution of rare earth elements in soils of contrasting geological and pedological settings to support human health assessment and environmental policies

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Establishing quality reference values (QRVs) for rare earth elements (REEs) in soils is essential for the screening of these emergent contaminants. Currently, Brazil has the second-largest reserve of REEs, but data regarding background concentrations and distributions in soils remain scarce. The aim of this study was to establish the QRVs and assess the spatial distribution of REEs in soils, including REE fractionations and anomalies in (Piauí) state (251,529.186 km2), northeastern Brazil. This study reports the most detailed data on REE geochemistry in Brazilian soils. A total of 243 composite soil samples was collected at 0–20 cm depth. The mean background concentrations in soils followed the abundance of the earth’s upper crust: Ce > La > Nd > Pr > Sm > Dy > Gd > Er > Yb > Eu > Tb > Lu. The ∑REEs (mg kg−1) showed the following order based on the individual mesoregions of Piauí state: Southeast (262.75) > North and Central-North (89.68) > Southwest (40.33). The highest QRVs were observed in the Southeast mesoregion. The establishment of QRVs based on the mesoregion scale improves data representativeness and the monitoring of natural REE values by identifying hot spots. Geostatistical modeling indicated significant local variability, especially in the Southeast mesoregion. The levels of these elements in this spatial zone are naturally higher than the other values across Piauí state and the mesoregion itself and indicate a high potential to exceed the QRVs. Our approach provides much needed data to help strengthen policies for both human health and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alfaro, M. R., Montero, A., Ugarte, O. M., Nascimento, C. W. A., Accioly, A. M. A., Biondi, C. M., et al. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environ Monit Assess, 187, 4198. https://doi.org/10.1007/s10661-014-4198-3.

    Article  CAS  Google Scholar 

  • Alfaro, M. R., Nascimento, C. W. A., Biondi, C. M., Silva, Y. J. A. B., Silva, Y. J. A. B., Accioly, A. M. A., Montero, A., Ugarte, O. M., & Estevez, J. (2018). Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. CATENA, 162, 317–324. https://doi.org/10.1016/j.catena.2017.10.031

    Article  CAS  Google Scholar 

  • Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. D., & Barros, F. M. R. (2016). Background and reference values of metals in soils from Paraíba state, Brazil. Rev Bras Cienc Solo, 40, 1–13. https://doi.org/10.1590/18069657rbcs20150122

    Article  CAS  Google Scholar 

  • Andrade Junior, A. D., Bastos, E. A., Barros, A. H. C., Silva, C. D., & Gomes, A. A. N. (2005). Classificação climática e regionalização do semi-árido do Estado do Piauí sob cenários pluviométricos distintos. Rev Cienc Agron, 36, 143–151.

    Google Scholar 

  • Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005

    Article  CAS  Google Scholar 

  • Biondi, C. M., Nascimento, C. W. A. D., Neta, F., Brito, A., & Ribeiro, M. R. (2011). Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco Brazil. Revista Brasileira De Ciência Do Solo, 35(3), 1057–1066.

    Article  CAS  Google Scholar 

  • Boechat, C. L., Duarte, L. S. L., Sena, A. F. S., Nascimento, C. W. A., Silva, Y. J. A. B., Silva, Y. J. A. B., Brito, A. C. C., & Saraiva, P. C. (2020). Background concentrations and quality reference values for potentially toxic elements in soils of Piauí State Brazil. 192, 723. https://doi.org/10.1007/s10661-020-08656-w

    Article  CAS  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Fieldscale variability of soil properties in Central Iowa soil. Soil Science Society of America Journal, 58, 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x

    Article  Google Scholar 

  • Caxito FA, Uhlein A (2013) Arcabouço tectônico e estratigráfico da Faixa Riacho do Pontal, divisa Pernambuco-Piauí-Bahia. Rev Geon, 21(2).

  • Chen, J., Wei, F., Zheng, C., Wu, Y., & Adrian, D. C. (1991). Background concentrations of elements in soils of China. Water, Air, & Soil Pollution, 57–58, 699–712.

    Article  Google Scholar 

  • Chen, H., Chen, Z., Chen, Z., Ma, Q., & Zhang, Q. (2019). Rare earth elements in paddy fields from eroded granite hilly land in a southern China watershed. PLoS ONE. https://doi.org/10.1371/journal.pone.0222330

    Article  Google Scholar 

  • Compton, J. S., White, R. A., & Smith, M. (2003). Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chemical Geology, 201, 239–255. https://doi.org/10.1016/S0009-2541(03)00239-0

    Article  CAS  Google Scholar 

  • Conselho Nacional Do Meio Ambiente - CONAMA. Resolução nº 420/2009. http://www.mma.gov.br/port/conama/legiabre.cfm.htm. Accessed 11 February 2020.

  • Costa, R. D. S., Paula Neto, P., Campos, M. C. C., Nascimento, W. B., Nascimento, C. W. A., Silva, L. S., & Cunha, J. M. (2017). Natural contents of heavy metals in soils of the southern Amazonas state Brazil. Semina: Cienc Agra, 38, 3499–3514. https://doi.org/10.5433/1679-0359.2017v38n6p3499

    Article  CAS  Google Scholar 

  • Donagema, G. K., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise de solo. Embrapa Solos.

    Google Scholar 

  • Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., & Dissanayake, K. (2020). The story of rare earth elements (REEs): occurrences global distribution. Genesis. Geology. mineralogy and global production. https://doi.org/10.1016/j.oregeorev.2020.103521

    Article  Google Scholar 

  • Feitosa, M. M., Silva, Y. J. A. B., Biondi, C. M., Alcantara, V. C., & Nascimento, C. W. A. (2020). Rare Earth elements in rocks and soil profiles of a tropical volcanic archipelago in the Southern Atlantic. CATENA, 194, 104674.

    Article  CAS  Google Scholar 

  • Fernandes, A. R., Souza, E. S., Braz, A. M. S., Birani, S. M., & Alleoni, L. R. F. (2018). Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. Journal of Geochemical Exploration, 190, 453–463. https://doi.org/10.1016/j.gexplo.2018.04.012

    Article  CAS  Google Scholar 

  • Gee, G.W., Or, D. (2002). Particle size analysis. In Dane JH, Topp GC (4 ed) Methods of soil analysis: Physical methods. Soil Science Society of America, pp. 255–293.

  • Grego, C., & Vieira, S. R. (2005). Variabilidade espacial de propriedades físicas do solo em uma parcela experimental. Revista Brasileira De Ciência Do Solo, 29(2), 169–177.

    Article  Google Scholar 

  • Huang, Z., Fan, M., & Tian, H. (2020). Rare earth elements of fly ash from Wyoming’s Powder River Basin Coal. J Rare Earth, 38(2), 219–226. https://doi.org/10.1016/j.jre.2019.05.004

    Article  CAS  Google Scholar 

  • Jacomine, P. (1983). Mapa exploratório-reconhecimento de solos do estado do Piauí. EMBRAPA/SNLCS-SUDENE-DRN.

  • Júnior, A.S.A., Bastos, E.A., Silva, C.O., Gomes, A.A.N., Figueredo Júnior, L.G.M. (2004). Atlas climatológico do Estado do Piauí. Embrapa Meio-Norte-Documentos (INFOTECA-E).

  • Laveuf, C., & Cornu, S. A. (2009). Review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154(1–2), 1–12. https://doi.org/10.1016/j.geoderma.2009.10.002

    Article  CAS  Google Scholar 

  • Löll, M., Reiher, W., & Felix-Henningsen, P. (2011). Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). Journal of Plant Nutrition and Soil Science, 174(4), 644–654. https://doi.org/10.1002/jpln.201000265

    Article  CAS  Google Scholar 

  • Martinez-Lladó, X., Vilà, M., Martí, V., Rovira, M., Domènech, J. A., & Pablo, J. (2008). Trace element distribution in Topsoils in Catalonia: background and reference values and relationship with regional geology. Environmental Engineering Science25–26, 863–878. https://doi.org/10.1089/ees.2007.0139

    Article  CAS  Google Scholar 

  • National Institute of Standards and Technology - NIST. Standard Reference Materials - SEM 2709, 2710 and 2711. Addendum Issue Date: 18 Jan. (2002).

  • Nogueira, T. A. R., Abreu-Junior, C. H., Alleoni, L. R. F., He, Z., et al. (2018). Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. Journal of Environmental Management, 221, 10–19. https://doi.org/10.1016/j.jenvman.2018.05.048

    Article  CAS  Google Scholar 

  • Paye, H. S., Mello, J. W., Magalhães Mascarenhas, G. R. L., & Gasparon, M. (2016). Distribution and fractionation of the rare earth elements in Brazilian soils. Journal of Geochemical Exploration, 161, 27–41. https://doi.org/10.1016/j.gexplo.2015.09.003

    Article  CAS  Google Scholar 

  • Ribeiro P. J. Jr, Diggle, P. J., Schlather, M., Bivand R., Ripley, B. (2020). geoR: Analysis of Geostatistical Data. R package version 1.8–1. https://CRAN.R-project.org/package=geoR

  • Pereira, B. A., Silva, Y. J. A. B., Nascimento, C. W. A., Silva, Y. J. A. B., Nascimento, R. C., Boechat, C. L., Barbosa, R. S., & Singh, V. P. (2019). Watershed scale assessment of rare earth elements in soils derived from sedimentary rocks. Environmental Monitoring and Assessment, 191, 514. https://doi.org/10.1007/s10661-019-7658-y

    Article  CAS  Google Scholar 

  • Pfaltzgraff, P.A.S., Torres, F.S.M., Brandão, R.L. (2010). Geodiversidade do Estado do Piauí. http://rigeo.cprm.gov.br/jspui/handle/doc/16772. Accessed 25 June 2019.

  • Preston, W., & Araújo do Nascimento CW, Miranda Biondi C, Souza Junior V S, Ramos da Silva W, Alves Ferreira, H, . (2014). Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. 38(3), 1028–1037. https://doi.org/10.1590/S0100-06832014000300035

    Article  Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Lopez-Sanchez, J. F. (2010). Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils. Analytica Chimica Acta, 662(2), 128–136. https://doi.org/10.1016/j.aca.2010.01.006

    Article  CAS  Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. https://www.R-project.org/.

  • Sadeghi, M., Morris, G. A., Carranza, E. J. M., Ladenberger, A., & Andersson, M. (2013). Rare earth element distribution and mineralization in Sweden: An application of principal component analysis to FOREGS soil geochemistry. Journal of Geochemical Exploration, 133, 160–175. https://doi.org/10.1016/j.gexplo.2012.10.015

    Article  CAS  Google Scholar 

  • Sahoo, P. K., Dall’Agnola, R., Salomão, G. N., Junior, J. S. F., Silva, M. S., Souza Filho, P. W. M., Costa, M. L., Angélica, R. S., Medeiros Filho, C. A., Costa, M. F., Guilherme, L. R. G., & Siqueira, J. O. (2020). Regional-scale mapping for determining geochemical background values in soils of the Itacaiúnas River Basin, Brazil: The use of compositional data analysis (CoDA). Geoderma, 376, 114504. https://doi.org/10.1016/j.geoderma.2020.114504

    Article  CAS  Google Scholar 

  • Salonen, V., & Korkka-Niemi, K. (2007). Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22, 906–918. https://doi.org/10.1016/j.apgeochem.2007.02.003

    Article  CAS  Google Scholar 

  • Santos, S. N., & Alleoni, L. R. F. (2013). Reference values for heavy metals in soils of the Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment, 185(7), 5737–5748. https://doi.org/10.1007/s10661-012-2980-7

    Article  CAS  Google Scholar 

  • Santos, F. H., Amaral, W. S., Uchôa Filho, E. C., & Martins, D. T. (2017). Detrital zircon U-Pb ages and whole-rock geochemistry of the Neoproterozoic Paulistana and Santa Filomena complexes, Borborema Province, northeastern Brazil: Implications for source area composition, provenance, and tectonic setting. International Geologiy Review, 59(15), 1861–1884. https://doi.org/10.1080/00206814.2017.1300074

    Article  Google Scholar 

  • Serviço Geológico do Brasil – CPRM, (2009), Mapa Geodiversidade do Estado do Piauí. https:// http:// http://rigeo.cprm.gov.br/jspui/handle/doc/14708. Accessed 10 June 2019.

  • Silva, Y. J. A. B., Nascimento, C. W. A., Cantalice, J. R. B., Silva, Y. J. A. B., & Cruz, C. M. C. A. (2015). Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment, 187(9), 558. https://doi.org/10.1007/s10661-015-4782-1

    Article  CAS  Google Scholar 

  • Silva, Y. J. A. B. D., Nascimento, C. W. A. D., Silva, Y. J. A. B. D., Biondi, C. M., & Silva, C. M. C. A. C. (2016). Rare earth element concentrations in Brazilian benchmark soils. https://doi.org/10.1590/18069657rbcs20150413

    Article  Google Scholar 

  • Silva, Y. J. A. B., Nascimento, C. W. A., Silva, Y. J. A. B., Amorim, F. F., Cantalice, J. R. B., Singh, V. P., & Collins, A. L. (2018a). Bed and suspended sediment-associated rare earth element concentrations and fluxes in a polluted Brazilian river system. 25(34), 34426–34437. https://doi.org/10.1007/s11356-018-3357-4

    Article  CAS  Google Scholar 

  • Silva, C. M. C. A. C., Barbosa, R. S., Nascimento, C. W. A. D., Silva, Y. J. A. B. D., & Silva, Y. J. A. B. D. (2018b). Geochemistry and spatial variability of rare earth elements in soils under different geological and climate patterns of the Brazilian Northeast. https://doi.org/10.1590/18069657rbcs20170342

    Article  Google Scholar 

  • Silva, C. M. C. A. C., Nascimento, R. C., Silva, Y. J. A. B., Barbosa, R. S., Silva, Y. J. A. B., Nascimento, C. W. A., & Straaten, V. P. (2020). Combining geospatial analyses to optimize quality reference values of rare earth elements in soils. Environmental Monitoring and Assessment, 192(7), 1–13. https://doi.org/10.1007/s10661-020-08406-y

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell.

    Google Scholar 

  • Tazikeh, H., Khormali, F., Amini, A., & Motlagh, M. B. (2018). Geochemistry of soils derived from selected sedimentary parent rocks in Kopet Dagh, North East Iran. Journal of Geochemical Exploration, 194, 52–70. https://doi.org/10.1016/j.gexplo.2018.07.008

    Article  CAS  Google Scholar 

  • Tyler, G., & Olsson, T. (2002). Conditions related to solubility of rare and minor elements in forest soils. Journal of Plant Nutrition and Soil Science, 165(5), 594–601. https://doi.org/10.1002/1522-2624(200210)165:5%3c594::AID-JPLN594%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency [USEPA], (1998). Method 3051a - microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington.

  • Wei, F. S., Zheng, C. J., Chen, J. S., & Wu, Y. Y. (1991). Study on the background contents on 61 elements of soils in China. Journal of Environmental Sciences, 12, 12–20.

    CAS  Google Scholar 

  • Zhanheng, C. H. E. N. (2011). Global rare earth resources and scenarios of future rare earth industry. J Rare Earth, 29(1), 1–6. https://doi.org/10.1016/S1002-0721(10)60401-2

    Article  Google Scholar 

  • Zhou, B. (2017). Global potential of rare earth resources and rare earth demand from clean technologies. Minerals, 7, 203–217. https://doi.org/10.3390/min7110203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) that provided a scholarship to the first author. The contribution by ALC was funded by grant award BBS/E/C/000I0330 from the UKRI-BBSRC (UK Research and Innovation-Biotechnology and Biological Sciences Research Council). C.W.A. Nascimento and Y.J.A.B. Silva are grateful to the Brazilian National Research and Development Council—CNPq for research productivity scholarships ((Process Numbers: 305782/2018-5, and 303221/2019-4).

Funding

This study was financed by the Brazilian National Research and Development Council—CNPq (Process Number: 404394/2016–7).

Author information

Authors and Affiliations

Authors

Contributions

The individual contributions of authors can be seen below: YJABS1 contributed to conceptualization, design of methodology, writing and editing; JSPL contributed to data acquisition, writing and editing; CWAN contributed to writing and editing; YJABS2 contributed to design of methodology, writing and editing; RCN contributed to data analysis, writing and editing; CLB contributed to design of methodology, writing and editing; CMCACS contributed to data analysis, writing and editing; RAO contributed to data analysis, writing and editing; RSB contributed to writing and editing; TSS contributed to writing and editing; CMB contributed to writing and editing; ALC contributed to writing and editing.

Corresponding author

Correspondence to Yuri Jacques Agra Bezerra da Silva.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landim, J.S.P., da Silva, Y.J.A.B., do Nascimento, C.W.A. et al. Distribution of rare earth elements in soils of contrasting geological and pedological settings to support human health assessment and environmental policies. Environ Geochem Health 44, 861–872 (2022). https://doi.org/10.1007/s10653-021-00993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00993-0

Keywords

Navigation