Skip to main content

Advertisement

Log in

Watershed scale assessment of rare earth elements in soils derived from sedimentary rocks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Despite the rare earth elements (REEs) being considered as emerging contaminants, their natural values and possible anthropogenic enrichments in soils have not been studied well in Brazil. The intensive use of conditioners and fertilizers in agricultural frontiers from Brazilian Cerrado can increase the concentration of REE in soils of the region. In this context, the objectives of this study were to determine the natural content and establish quality reference values (QRV) for REEs in soils of a watershed from Brazilian Cerrado composed of sedimentary rocks and to evaluate the influence of agricultural cultivation and the spatial variability of these elements. Thirty and twenty-six composite soil samples were collected under native vegetation and soybean cultivation, respectively. The background concentrations followed the order (mg kg−1) Ce > Nd > La > Pr > Sm > Yb > Er > Eu > Dy. The QRVs established were as follows (mg kg−1): La (1.76), Ce (5.20), Pr (0.74), Nd (1.35), Sm (0.38), Eu (0.06), Dy (0.15), Er (0.12), and Yb (0.14). Lantanium, Ce, and Er exhibited strong spatial dependence, while Eu, Dy, and Yb showed weak or total absence of spatial dependence. The spherical model was most suitable for the spatial characteristics of REEs. The parent material, mainly characterized by soils derived from sedimentary rocks (i.e., sandstone), was the primordial source of REEs for soils and that there was no or little effect of agricultural practices on these levels. Our data reinforced the need for geochemical mapping at the watershed scale, since they are important conservation units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfaro, M. R., Nascimento, C. W. A., Biondi, C. M., Silva, Y. J. A. B., Silva, Y. J. A. B., de Aguiar Accioly, A. M., Montero, A., Ugarte, O. M., & Estevez, J. (2018). Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena, 162, 317–324.

    Article  CAS  Google Scholar 

  • Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. D., & Barros, F. M. R. (2016). Background and reference values of metals in soils from Paraíba state, Brazil. Revista Brasileira de Ciência do Solo, 40, 1–13.

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

    Article  Google Scholar 

  • Biondi, C. M., Nascimento, C. W. A. D., Neta, F., de Brito, A., & Ribeiro, M. R. (2011). Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil. Revista Brasileira de Ciência do Solo, 35(3), 1057–1066.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511.

    Article  Google Scholar 

  • Chakraborty, S., Man, T., Paulette, L., Deb, S., Li, B., Weindorf, D. C., & Frazier, M. (2017). Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma, 306, 108–119.

    Article  CAS  Google Scholar 

  • COMDEPI. (2002). Companhia de desenvolvimento do Piauí. Estudo de viabilidade para aproveitamento hidroagrícola do vale do rio Uruçuí Preto. Teresina

  • Conselho Nacional do Meio Ambiente—CONAMA. (2009). Resolução n°420/2009. http://www.mma.gov.br/port/conama/legiabre.cfm.html. Accessed 06 April 2018.

  • Costa, R. D. S., Paula Neto, P., Campos, M. C. C., Nascimento, W. B., Nascimento, C. W. A., Silva, L. S., & Cunha, J. M. (2017). Natural contents of heavy metals in soils of the southern Amazonas state, Brazil. Semina Ciências Agrárias (online), 38, 3499–3514.

    Article  Google Scholar 

  • CPRM. (2010). Serviço Geológico do Brasil. Mapa Geológico do Estado do Piauí Geologia e recursos minerais do Estado do Piauí, Teresina: Serviço Geológico do Brasil, (available online: http://rigeo.cprm.gov.br/xmlui/handle/doc/2923?show=full).

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Biotechnology, 12(4), 335–353.

    Article  CAS  Google Scholar 

  • Fadigas, F. D. S., Sobrinho, N., do Amaral, M. B., Mazur, N., dos Anjos, L. H., & Freixo, A. A. (2006). Proposition of reference values for natural concentration of heavy metals in Brazilian soils. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(3), 699–705.

    Article  Google Scholar 

  • França, L. C. J., Lisboa, G. S., Silva, J. B. L., Júnior, F. R., Junior, V. T. M. M., & Cerqueira, C. L. (2016). Suitability for agricultural and forestry mechanization of the Uruçuí-Preto River Hydrographic Basin, Piauí, Brazil. Nativa, 4(4), 238–243.

    Article  Google Scholar 

  • Gao, Z., Fu, W., Zhang, M., Zhao, K., Tunney, H., & Guan, Y. (2016). Potentially hazardous metals contamination in soil-rice system and it’s spatial variation in Shengzhou City, China. Journal of Geochemical Exploration, 167, 62–69.

    Article  CAS  Google Scholar 

  • Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299–313.

    Article  CAS  Google Scholar 

  • Hardy, M., & Cornu, S. (2006). Location of natural trace elements in silty soils using particle-size fractionation. Geoderma, 133(3-4), 295–308.

    Article  CAS  Google Scholar 

  • Hedrick, J. B. (1995). The global rare-earth cycle. Journal of Alloys and Compounds, 225(1-2), 609–618.

    Article  CAS  Google Scholar 

  • Hu, Z., Haneklaus, S., Sparovek, G., & Schnug, E. (2006). Rare earth elements in soils. Communications in Soil Science and Plant Analysis, 37(9-10), 1381–1420.

    Article  CAS  Google Scholar 

  • Huang, H., Lin, C., Yu, R., Yan, Y., Hu, G., & Wang, Q. (2019). Spatial distribution and source appointment of rare earth elements in paddy soils of Jiulong River Basin, Southeast China. Journal of Geochemical Exploration, 200, 213–220.

    Article  CAS  Google Scholar 

  • Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst (Vol. 380). Redlands: Esri.

    Google Scholar 

  • Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114.

    Article  CAS  Google Scholar 

  • Jovein, E. B., & Hosseini, S. M. (2017). Predicting saltwater intrusion into aquifers in vicinity of deserts using spatio-temporal kriging. Environmental Monitoring and Assessment, 189(2), 81.

    Article  CAS  Google Scholar 

  • Kobayashi, Y., Ikka, T., Kimura, K., Yasuda, O., & Koyama, H. (2007). Characterisation of lanthanum toxicity for root growth of Arabidopsis thaliana from the aspect of natural genetic variation. Functional Plant Biology, 34(11), 984–994.

    Article  CAS  Google Scholar 

  • Laveuf, C., & Cornu, S. (2009). A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154(1-2), 1–12.

    Article  CAS  Google Scholar 

  • Leonardo, L., Damatto, S. R., Gios, B. R., & Mazzilli, B. P. (2014). Lichen specie Canoparmelia texana as bioindicator of environmental impact from the phosphate fertilizer industry of São Paulo, Brazil. Journal of Radioanalytical and Nuclear Chemistry, 299(3), 1935–1941.

    Article  CAS  Google Scholar 

  • Li, X. Y., Liu, L. J., Wang, Y. G., Luo, G. P., Chen, X., & Yang, X. L. (2013). Heavy metal contamination of urban soil in an old industrial city (Shengyang) in Northeast China. Geoderma, 192, 50–58.

    Article  CAS  Google Scholar 

  • Loell, M., Albrecht, C., & Felix-Henningsen, P. (2011). Rare earth elements and relation between their potential bioavailability and soil properties, Nidda catchment (Central Germany). Plant and Soil, 349(1-2), 303–317.

    Article  CAS  Google Scholar 

  • Markert, B., & Li, Z. D. (1991). Natural background concentrations of rare-earth elements in a forest ecosystem. Science of the Total Environment, 103(1), 27–35.

    Article  CAS  Google Scholar 

  • Mazhari, S. A., & Attar, R. S. (2015). Rare earth elements in surface soils of the Davarzan area, NE of Iran. Geoderma Regional, 5, 25–33.

    Article  Google Scholar 

  • Medeiros, R. M., & Francisco, P. R. M. (2016). Estudo Climatológico da Bacia Hidrográfica do Rio Uruçuí Preto-Piauí. Campina Grande: Ed. EDUFCG.

    Google Scholar 

  • Medeiros, R. M., da Silva, V. D. P. R., & Gomes Filho, M. F. (2013). Análise hidroclimática da bacia hdrográfica do rio uruçuí preto-pi. Revista de Engenharia e Tecnologia, 5(4).

  • National Institute OF Standards and Technology—NIST. Standard Reference Materials-SRM 2709, 2710 and 2711 Addendum Issue Date: 18 January 2002.

  • Pagano, G., Guida, M., Tommasi, F., & Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements—knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40–48.

    Article  CAS  Google Scholar 

  • Paye, H. S., de Mello, J. W., de Magalhães Mascarenhas, G. R. L., & Gasparon, M. (2016). Distribution and fractionation of the rare earth elements in Brazilian soils. Journal of Geochemical Exploration, 161, 27–41.

    Article  CAS  Google Scholar 

  • Pérez, D. V., Saldanha, M. D. C., Meneguelli, N. D. A., Moreira, J. C., & Vaitsman, D. S. (1997). Geoquímica de alguns solos brasileiros. EMBRAPA-CNPS.

  • Preston, W., Araújo do Nascimento, C. W., Miranda Biondi, C., de Souza Junior, V. S., Ramos da Silva, W., & Alves Ferreira, H. (2014). Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Revista Brasileira de Ciência do Solo, 38(3), 1028–1037.

    Article  CAS  Google Scholar 

  • Ramos, S. J., Dinali, G. S., Oliveira, C., Martins, G. C., Moreira, C. G., Siqueira, J. O., & Guilherme, L. R. (2016). Rare earth elements in the soil environment. Current Pollution Reports, 2(1), 28–50.

    Article  CAS  Google Scholar 

  • Richer-de-Forges, A. C., Saby, N. P., Mulder, V. L., Laroche, B., & Arrouays, D. (2017). Probability mapping of iron pan presence in sandy podzols in South-West France, using digital soil mapping. Geoderma Regional, 9, 39–46.

    Article  Google Scholar 

  • Sadeghi, M., Morris, G. A., Carranza, E. J. M., Ladenberger, A., & Andersson, M. (2013). Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. Journal of Geochemical Exploration, 133, 160–175.

    Article  CAS  Google Scholar 

  • Salminen, R. B., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O’Connor, P. J., Olsson, S. A., Ottesen, R. T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., & Tarvainen, T. (Eds.). (2005). FOREGS Geochimical Atlas of Europe, part 1: background information, methodology and maps. Geological Survey of Finland.

  • Shah, M. H., Iqbal, J., Shaheen, N., Khan, N., Choudhary, M. A., & Akhter, G. (2012). Assessment of background levels of trace metals in water and soil from a remote region of Himalaya. Environmental Monitoring and Assessment, 184(3), 1243–1252.

    Article  CAS  Google Scholar 

  • Silva, Y. J. A. B. D., Nascimento, C. W. A. D., Silva, Y. J. A. B. D., Biondi, C. M., & Silva, C. M. C. A. C. (2016). Rare earth element concentrations in Brazilian benchmark soils. Revista Brasileira de Ciência do Solo, 40.

  • Silva, Y. J. A. B., do Nascimento, C. W. A., da Silva, Y. J. A. B., Amorim, F. F., Cantalice, J. R. B., Singh, V. P., & Collins, A. L. (2018a). Bed and suspended sediment-associated rare earth element concentrations and fluxes in a polluted Brazilian river system. Environmental Science and Pollution Research, 25(34), 34426–34437.

    Article  CAS  Google Scholar 

  • Silva, C. M. C. A. C., Barbosa, R. S., Nascimento, C. W. A. D., Silva, Y. J. A. B. D., & Silva, Y. J. A. B. D. (2018b). Geochemistry and spatial variability of rare earth elements in soils under different geological and climate patterns of the Brazilian Northeast. Revista Brasileira de Ciência do Solo, 42.

  • Silva, F. B. V., Nascimento, C. W. A., Alvarez, A. M., & Araújo, P. R. M. (2019). Inputs of rare earth elements in Brazilian agricultural soils via P-containing fertilizers and soil correctives. Journal of Environmental Management, 232, 90–96.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). An examination of the geochemical record preserved in sedimentary rocks. The Continental Crust: Its Composition and Evolution.

    Google Scholar 

  • Tazikeh, H., Khormali, F., Amini, A., & Motlagh, M. B. (2018). Geochemistry of soils derived from selected sedimentary parent rocks in Kopet Dagh, North East Iran. Journal of Geochemical Exploration, 194, 52–70.

    Article  CAS  Google Scholar 

  • Teixeira, P. C., Donagema, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo. Rio de Janeiro (4th ed.). Brasília: EMBRAPA 573 p.

    Google Scholar 

  • Tesfahunegn, G. B., Tamene, L., & Vlek, P. L. (2011). Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil and Tillage Research, 117, 124–139.

    Article  Google Scholar 

  • Thuong, N. T., Yoneda, M., Ikegami, M., & Takakura, M. (2013). Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches. Environmental Monitoring and Assessment, 185(10), 8065–8075.

    Article  CAS  Google Scholar 

  • Turra, C., & Bacchi, M. A. (2011). Evaluation on rare earth elements of Brazilian agricultural supplies. Journal of Environmental Chemistry and Ecotoxicology, 3(4), 86–92.

    CAS  Google Scholar 

  • Tyler, G., & Olsson, T. (2002). Conditions related to solubility of rare and minor elements in forest soils. Journal of Plant Nutrition and Soil Science, 165(5), 594–601.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency–USEPA. (1998). Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. SW-846: test methods for evaluation of solid waste physical and chemical methods, Office of Solid Waste, US.

  • Vermeire, M. L., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B., & Cornélis, J. T. (2016). Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology, 446, 163–174.

    Article  CAS  Google Scholar 

  • Wang, L., & Liang, T. (2016). Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China. Environmental Science and Pollution Research, 23(11), 11330–11338.

    Article  CAS  Google Scholar 

  • Zhang, H., Feng, J., Zhu, W., Liu, C., Xu, S., Shao, P., Wu, D., Yang, W., & Gu, J. (2000). Chronic toxicity of rare-earth elements on human beings. Biological Trace Element Research, 73(1), 1–17.

    Article  CAS  Google Scholar 

  • Zhuang, M., Zhao, J., Li, S., Liu, D., Wang, K., Xiao, P., Yu, L., Jiang, Y., Song, J., Zhou, J., Wang, L., & Wang, L. (2017). Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere, 168, 578–582.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) that provided a scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Jacques Agra Bezerra da Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Albuquerque Pereira, B., da Silva, Y.J.A.B., do Nascimento, C.W.A. et al. Watershed scale assessment of rare earth elements in soils derived from sedimentary rocks. Environ Monit Assess 191, 514 (2019). https://doi.org/10.1007/s10661-019-7658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7658-y

Keywords

Navigation