Skip to main content

Advertisement

Log in

Rare Earths as Emerging Trace Element Contaminants in the Soil

  • REVIEW
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review examines recent publications on rare earth elements (REE) in soils, critically evaluating their role as emerging soil contaminants. We emphasized new findings and main gaps using a previous review paper published in 2016 by our research group as a reference point. Three major subjects were prioritized: (1) sources, background levels, and behavior of REE in soils; (2) plant development and metabolism as affected by REE exposure; and (3) environmental and human health risk assessments of REE in the soil environment.

Recent Findings

Publications addressing the occurrence and fate of REE in the soil environment have more than tripled in the last decade. Coincidentally, global REE exploration has more than doubled in the past 7 years. Because of their unique features, the global demand for REE is expected to increase by at least 50% in the next 10 years. As soils are the main sink of contaminants, we must continue to investigate the consequences of the unceasing addition of these elements in soil ecosystems.

Summary

We highlighted the main sources of REE, their background levels in selected global soils, and their physicochemical behavior. The relationship between REE and plants revealed potential benefits such as environmental stress tolerance. Finally, ecological and human health risk assessment data for REE in soils were carefully discussed in terms of their potential adverse effects on biota. We conclude with a survey in which prominent authors working with REE answered questions about challenges and opportunities for innovative research on REE in soil-plant-animal/human systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data generated during the survey will be made available on request.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Ramos SJ, Dinali GS, Oliveira C, Martins GC, Moreira CG, Siqueira JO, et al. Rare earth elements in the soil environment. Curr Pollut Rep. 2016;2:28–50. This article is the most comprehensive review published in the last decade concerning the study of REE in the soil environment.

    Article  CAS  Google Scholar 

  2. U.S. Geological Survey. Mineral commodity summaries 2018. U.S. Geological Survey; 2018. p. 200. https://doi.org/10.3133/70194932.

    Book  Google Scholar 

  3. U.S. Geological Survey. Mineral commodity summaries 2024. U.S. Geological Survey; 2024. p. 212. https://doi.org/10.3133/mcs2024.

    Book  Google Scholar 

  4. Brewer A, Dror I, Berkowitz B. Electronic waste as a source of rare earth element pollution: leaching, transport in porous media, and the effects of nanoparticles. Chemosphere. 2022;287:132217.

    Article  CAS  Google Scholar 

  5. Tian S, Liang T, Li K, Wang L. Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust. Sci Total Environ. 2018;633:958–66.

    Article  CAS  Google Scholar 

  6. Liu W-S, Guo M-N, Liu C, Yuan M, Chen X-T, Huot H, et al. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere. 2019;216:75–83.

    Article  CAS  Google Scholar 

  7. Dinali GS, Root RA, Amistadi MK, Chorover J, Lopes G, Guilherme LRG. Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture. Environ Int. 2019;128:279–91.

    Article  CAS  Google Scholar 

  8. Sager M, Wiche O. Rare Earth Elements (REE): Origins, dispersion, and environmental implications—a comprehensive review. Environments. 2024;11:24.

    Article  Google Scholar 

  9. Galhardi JA, Leles BP, De Mello JWV, Wilkinson KJ. Bioavailability of trace metals and rare earth elements (REE) from the tropical soils of a coal mining area. Sci Total Environ. 2020;717:134484.

    Article  CAS  Google Scholar 

  10. Zerizghi T, Guo Q, Wei R, Wang Z, Du C, Deng Y. Rare earth elements in soil around coal mining and utilization: contamination, characteristics, and effect of soil physicochemical properties. Environ Pollut. 2023;331:121788.

    Article  CAS  Google Scholar 

  11. Pallozi J, Bailey JG, Tran QA, Stanger R. A characterization of rare earth elements in coal ash generated during the utilization of Australian coals. Int J Coal Prep Util. 2023;43(12):2106–35. https://doi.org/10.1080/19392699.2022.2159948.

    Article  CAS  Google Scholar 

  12. Stoy L, Xu J, Kulkarni Y, Huang C-H. Ionic liquid recovery of rare-earth elements from coal fly ash: process efficiency and sustainability evaluations. ACS Sustain Chem Eng. 2022;10:11824–34.

    Article  CAS  Google Scholar 

  13. Hedin BC, Capo RC, Stewart BW, Hedin RS, Lopano CL, Stuckman MY. The evaluation of critical rare earth element (REE) enriched treatment solids from coal mine drainage passive treatment systems. Int J Coal Geol. 2019;208:54–64.

    Article  CAS  Google Scholar 

  14. Liu Q, Shi H, An Y, Ma J, Zhao W, Qu Y, et al. Source, environmental behavior and potential health risk of rare earth elements in Beijing urban park soils. J Hazard Mater. 2023;445:130451.

    Article  CAS  Google Scholar 

  15. Mleczek P, Borowiak K, Budka A, Szostek M, Niedzielski P. Possible sources of rare earth elements near different classes of road in Poland and their phytoextraction to herbaceous plant species. Environ Res. 2021;193:110580.

    Article  CAS  Google Scholar 

  16. Mleczek P, Borowiak K, Budka A, Niedzielski P. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Environ Sci Pollut Res. 2018;25:23695–711.

    Article  CAS  Google Scholar 

  17. Ramos SJ, Dinali GS, De Carvalho TS, Chaves LC, Siqueira JO, Guilherme LRG. Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America: content, signature, and crystalline phases. J Geochem Explor. 2016;168:177–86.

    Article  CAS  Google Scholar 

  18. Silva FBV, Nascimento CWA, Alvarez AM, Araújo PRM. Inputs of rare earth elements in Brazilian agricultural soils via P-containing fertilizers and soil correctives. J Environ Manage. 2019;232:90–6.

    Article  CAS  Google Scholar 

  19. Bispo FHA, De Menezes MD, Fontana A, Sarkis JEDS, Gonçalves CM, De Carvalho TS, et al. Rare earth elements (REEs): geochemical patterns and contamination aspects in Brazilian benchmark soils. Environ Pollut. 2021;289:117972.

    Article  CAS  Google Scholar 

  20. Naccarato A, Tassone A, Cavaliere F, Elliani R, Pirrone N, Sprovieri F, et al. Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Sci Total Environ. 2020;749:141438.

    Article  CAS  Google Scholar 

  21. Zhang Y, Su B, Shao S, Li N, Jiao H, Dan Y, et al. Geochemical behavior and source analysis of rare earth elements in intensive agriculture soils through high-resolution sampling. Sci Total Environ. 2023;905:167777.

    Article  CAS  Google Scholar 

  22. Neves VM, Heidrich GM, Hanzel FB, Muller EI, Dressler VL. Rare earth elements profile in a cultivated and non-cultivated soil determined by laser ablation-inductively coupled plasma mass spectrometry. Chemosphere. 2018;198:409–16.

    Article  CAS  Google Scholar 

  23. Gailey AD, Schachter AE, Egendorf SP, Mielke HW. Quantifying soil contamination and identifying interventions to limit health risks. Curr Probl Pediatr Adolesc Health Care. 2020;50:100740.

    Article  Google Scholar 

  24. Rate AW. Urban soil as a source and sink. In: Rate AW, editor. Urban soils. Cham: Springer International Publishing; 2022. p. 293–317. https://link.springer.com/10.1007/978-3-030-87316-5_9.

  25. Riederer AM, Smith KD, Barr DB, Hayden SW, Hunter RE, Ryan PB. Current and historically used pesticides in residential soil from 11 homes in Atlanta, Georgia, USA. Arch Environ Contam Toxicol. 2010;58:908–17.

    Article  CAS  Google Scholar 

  26. Sarkar B, Mukhopadhyay R, Ramanayaka S, Bolan N, Ok YS. The role of soils in the disposition, sequestration and decontamination of environmental contaminants. Philos Trans R Soc B Biol Sci. 2021;376:20200177.

    Article  CAS  Google Scholar 

  27. Xu J, Chen Z, Li Y, Dong S, Li L, Long S, et al. The changes in the physicochemical properties of calcareous soils and the factors of arsenic (As) uptake by wheat were investigated after the cessation of effluent irrigation for nearly 20 years. Sci Total Environ. 2023;859:160171.

    Article  CAS  Google Scholar 

  28. Ahmad W, Alharthy RD, Zubair M, Ahmed M, Hameed A, Rafique S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep. 2021;11:17006.

    Article  CAS  Google Scholar 

  29. Alfaro MR, Nascimento CWAD, Biondi CM, Silva YJABD, Silva YJABD, Accioly AMDA, et al. Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena. 2018;162:317–24.

    Article  CAS  Google Scholar 

  30. De Freitas TOP, Pedreira RMA, Hatje V. Distribution and fractionation of rare earth elements in sediments and mangrove soil profiles across an estuarine gradient. Chemosphere. 2021;264:128431.

    Article  Google Scholar 

  31. Ferreira MDS, Fontes MPF, Bellato CR, Marques Neto JDO, Lima HN, Fendorf S. Geochemical signatures and natural background values of rare earth elements in soils of Brazilian Amazon. Environ Pollut. 2021;277:116743.

    Article  CAS  Google Scholar 

  32. Ion A, Cosac A. Rare earth elements distribution in topsoil from Ditrău Alkaline Massif area, eastern Carpathians, Romania. Heliyon. 2023;9:e13976.

    Article  CAS  Google Scholar 

  33. Mihajlovic J, Bauriegel A, Stärk H-J, Roßkopf N, Zeitz J, Milbert G, et al. Rare earth elements in soil profiles of various ecosystems across Germany. Appl Geochem. 2019;102:197–217.

    Article  CAS  Google Scholar 

  34. Pasquini AI, Campodonico VA, Rouzaut S, Giampaoli V. Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina. Geoderma. 2017;295:53–68.

    Article  CAS  Google Scholar 

  35. Pereira WVDS, Ramos SJ, Melo LCA, Dias YN, Martins GC, Ferreira LCG, et al. Human and environmental exposure to rare earth elements in gold mining areas in the northeastern Amazon. Chemosphere. 2023;340:139824.

    Article  CAS  Google Scholar 

  36. • Reimann C, Fabian K, Birke M, Filzmoser P, Demetriades A, Négrel P, et al. GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl Geochem. 2018;88:302–18. Relevant paper with the establishment of geochemical background and threshold values for REE in 33 European countries.

    Article  CAS  Google Scholar 

  37. Silva CMCAC, Nascimento RC, Da Silva YJAB, Barbosa RS, Da Silva YJAB, Do Nascimento CWA, et al. Combining geospatial analyses to optimize quality reference values of rare earth elements in soils. Environ Monit Assess. 2020;192:453.

    Article  CAS  Google Scholar 

  38. Wiche O, Zertani V, Hentschel W, Achtziger R, Midula P. Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). J Geochem Explor. 2017;175:120–9.

    Article  CAS  Google Scholar 

  39. Wu C-Y, Hseu Z-Y. Pedochemical behaviors of rare earth elements in soil profiles along a lithosequence in eastern Taiwan. Catena. 2023;225:107047.

    Article  CAS  Google Scholar 

  40. Zhou W, Han G, Liu M, Song C, Li X. Geochemical distribution characteristics of rare earth elements in different soil profiles in Mun River Basin. Northeast Thailand Sustainability. 2020;12:457.

    Article  CAS  Google Scholar 

  41. Mazzucotelli A, De Paz F, Magi E, Frache R. Interferences of major elements in the determination of rare earth elements by inductively coupled plasma atomic emission spectroscopy. Anal Sci. 1992;8:189–93.

    Article  CAS  Google Scholar 

  42. Ticová B, Novotný K, Kanický V. Comparison of different spectral resolution ICP-OES spectrometers for the determination of rare earth elements. Chem Pap. 2019;73:2913–21.

    Article  Google Scholar 

  43. Khanna PP, Saini NK, Mukherjee PK, Purohit KK. An appraisal of ICP-MS technique for determination of REEs: long term QC assessment of silicate rock analysis. Himal Geol. 2009;30(1):95–9.

    Google Scholar 

  44. Pinto FG, Junior RE, Saint’Pierre TD. Sample preparation for determination of rare earth elements in geological samples by ICP-MS: a critical review. Anal Lett. 2012;45:1537–56.

    Article  CAS  Google Scholar 

  45. Veerasamy N, Sahoo SK, Murugan R, Kasar S, Inoue K, Fukushi M, et al. ICP-MS measurement of trace and rare earth elements in beach placer-deposit soils of Odisha, East Coast of India, to estimate natural enhancement of elements in the environment. Molecules. 2021;26:7510.

    Article  CAS  Google Scholar 

  46. Wysocka I. Determination of rare earth elements concentrations in natural waters – a review of ICP-MS measurement approaches. Talanta. 2021;221:121636.

    Article  CAS  Google Scholar 

  47. Antonova SA, Ladonin DV. Rare earth elements in soils of the central forest state nature biosphere reserve. Eurasian Soil Sci. 2022;55:191–9.

    Article  CAS  Google Scholar 

  48. Chen J, Wei F, Zheng C, Wu Y, Adriano DC. Background concentrations of elements in soils of China. Water Air Soil Pollut. 1991;57–58:699–712.

    Article  Google Scholar 

  49. Matschullat J, Ottenstein R, Reimann C. Geochemical background - can we calculate it? Environ Geol. 2000;39:990–1000.

    Article  CAS  Google Scholar 

  50. Fernandes AR, Souza ESD, De Souza Braz AM, Birani SM, Alleoni LRF. Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon. Brazil J Geochem Explor. 2018;190:453–63.

    Article  CAS  Google Scholar 

  51. Barbieri M, Andrei F, Nigro A, Vitale S, Sappa G. The relationship between the concentration of rare earth elements in landfill soil and their distribution in the parent material: a case study from Cerreto, Roccasecca. Central Italy J Geochem Explor. 2020;213:106492.

    Article  CAS  Google Scholar 

  52. Durn G, Perković I, Stummeyer J, Ottner F, Mileusnić M. Differences in the behaviour of trace and rare-earth elements in oxidizing and reducing soil environments: case study of Terra Rossa soils and Cretaceous palaeosols from the Istrian peninsula. Croatia Chemosphere. 2021;283:131286.

    Article  CAS  Google Scholar 

  53. Egler SG, Niemeyer JC, Correia FV, Saggioro EM. Effects of rare earth elements (REE) on terrestrial organisms: current status and future directions. Ecotoxicology. 2022;31:689–99.

    Article  CAS  Google Scholar 

  54. Ou X, Chen Z, Chen Z, Liang M, Chen H. Effects of organic matter on the distribution of rare earth elements in red soil aggregates during ecological restoration. J Mt Sci. 2021;18:2915–28.

    Article  Google Scholar 

  55. Dong C, Han Z, Lu H, Zhao R, Cai Y, Li Y, et al. Concentration, speciation, and fractionation of rare earth elements in alluvial soils in contiguous karst landform, southwestern China. J Geochem Explor. 2024;256:107360.

    Article  CAS  Google Scholar 

  56. Khan AM, Bakar NKA, Bakar AFA, Ashraf MA. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review. Environ Sci Pollut Res. 2017;24:22764–89.

    Article  CAS  Google Scholar 

  57. Lachaux N, Catrouillet C, Marsac R, Poirier L, Pain-Devin S, Gross EM, et al. Implications of speciation on rare earth element toxicity: a focus on organic matter influence in Daphnia magna standard test. Environ Pollut. 2022;307:119554.

    Article  CAS  Google Scholar 

  58. Ferreira MDS, Fontes MPF, Lima MTWDC, Cordeiro SG, Wyatt NLP, Lima HN, et al. Human health risk assessment and geochemical mobility of rare earth elements in Amazon soils. Sci Total Environ. 2022;806:151191.

    Article  CAS  Google Scholar 

  59. Ou X, Chen Z, Chen X, Li X, Wang J, Ren T, et al. Redistribution and chemical speciation of rare earth elements in an ion–adsorption rare earth tailing. Southern China Sci Total Environ. 2022;821:153369.

    Article  CAS  Google Scholar 

  60. Estrade G, Marquis E, Smith M, Goodenough K, Nason P. REE concentration processes in ion adsorption deposits: evidence from the Ambohimirahavavy alkaline complex in Madagascar. Ore Geol Rev. 2019;112:103027.

    Article  Google Scholar 

  61. Feng X, Onel O, Council-Troche M, Noble A, Yoon R-H, Morris JR. A study of rare earth ion-adsorption clays: the speciation of rare earth elements on kaolinite at basic pH. Appl Clay Sci. 2021;201:105920.

    Article  CAS  Google Scholar 

  62. Li MYH, Zhou M-F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. Am Mineral. 2020;105:92–108.

    Article  Google Scholar 

  63. Liu X, Tournassat C, Grangeon S, Kalinichev AG, Takahashi Y, Marques FM. Molecular-level understanding of metal ion retention in clay-rich materials. Nat Rev Earth Environ. 2022;3:461–76.

    Article  CAS  Google Scholar 

  64. Borst AM, Smith MP, Finch AA, Estrade G, Villanova-de-Benavent C, Nason P, et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat Commun. 2020;11:4386.

    Article  CAS  Google Scholar 

  65. Wu C-Y, Chu M-F, Huang K-F, Hseu Z-Y. Rare earth elements associated with pedogenic iron oxides in humid and tropical soils from different parent materials. Geoderma. 2022;423:115966.

    Article  CAS  Google Scholar 

  66. Alp FN, Arikan B, Ozfidan-Konakci C, Gulenturk C, Yildiztugay E, Turan M, et al. Hormetic activation of nano-sized rare earth element terbium on growth, PSII photochemistry, antioxidant status and phytohormone regulation in Lemna minor. Plant Physiol Biochem. 2023;194:361–73.

    Article  CAS  Google Scholar 

  67. He D, Guo T, Peng C, Li J, Wang F. Foliar application of lanthanum promotes growth and phytoremediation potential Solanum nigrum L. J Environ Manage. 2023;334:117259.

    Article  CAS  Google Scholar 

  68. Chen L, Peng Y, Zhu L, Huang Y, Bie Z, Wu H. CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. Chemosphere. 2022;299:134474.

    Article  CAS  Google Scholar 

  69. Ogunkunle CO, Balogun GY, Olatunji OA, Han Z, Adeleye AS, Awe AA, et al. oliar application of nanoceria attenuated cadmium stress in okra (Abelmoschus esculentus L.). J Hazard Mater. 2023;445:130567.

    Article  CAS  Google Scholar 

  70. Ramírez-Olvera SM, Trejo-Téllez LI, García-Morales S, Pérez-Sato JA, Gómez-Merino FC. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS ONE. 2018;13(3):e0194691. https://doi.org/10.1371/journal.pone.0194691.

    Article  CAS  Google Scholar 

  71. Ben Y, Cheng M, Liu Y, Wang L, Yang Q, Huang X, et al. The stimulatory effect and mechanism of low-dose lanthanum on soybean leaf cells. J Hazard Mater. 2023;441:129924.

    Article  CAS  Google Scholar 

  72. Ribeiro PG, Dinali GS, Boldrin PF, De Carvalho TS, De Oliveira C, Ramos SJ, et al. Rare earth elements (REEs) rich-phosphate fertilizers used in Brazil are more effective in increasing legume crops yield than their REEs-poor counterparts. Int J Plant Prod. 2021;15:1–11.

    Article  CAS  Google Scholar 

  73. Gong B, He E, Xia B, Ying R, Peijnenburg WJGM, Liu Y, et al. Bioavailability and phytotoxicity of rare earth metals to Triticum aestivum under various exposure scenarios. Ecotoxicol Environ Saf. 2020;205:111346.

    Article  CAS  Google Scholar 

  74. Miclean M, Levei EA, Tanaselia C, Cadar O. Rare earth elements transfer from soil to vegetables and health risks associated with vegetable consumption in a former mining area. Agronomy. 2023;13:1399.

    Article  CAS  Google Scholar 

  75. Yuan M, Liu C, Liu W-S, Guo M-N, Morel JL, Huot H, et al. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int J Phytoremediation. 2018;20:415–23.

    Article  CAS  Google Scholar 

  76. Zhang C, Geng N, Dai Y, Ahmad Z, Li Y, Han S, et al. Accumulation and distribution characteristics of rare earth elements (REEs) in the naturally grown marigold (Tagetes erecta L.) from the soil. Environ Sci Pollut Res. 2023;30:46355–67.

    Article  CAS  Google Scholar 

  77. Wiche O, Dittrich C, Pourret O, Monei N, Heim J, Lambers H. Relationships between carboxylate-based nutrient-acquisition strategies, phosphorus-nutritional status and rare earth element accumulation in plants. Plant Soil. 2023. https://link.springer.com/10.1007/s11104-023-06049-9.

  78. Grosjean N, Purwadi I, Sirguey C, Chalot M, Le Jean M, Van Der Ent A, et al. Rare earth elements in plants: transfer, transport, accumulation, impacts and perspectives. Adv Bot Res. 2024;109:19–61. https://linkinghub.elsevier.com/retrieve/pii/S0065229623000654. Elsevier.

  79. Yuan M, Guo M-N, Liu W-S, Liu C, Van Der Ent A, Morel JL, et al. The accumulation and fractionation of Rare Earth Elements in hydroponically grown Phytolacca americana L. Plant Soil. 2017;421:67–82.

    Article  CAS  Google Scholar 

  80. Zheng H-X, Liu W-S, Sun D, Zhu S-C, Li Y, Yang Y-L, et al. Plasma-membrane-localized transporter NREET1 is responsible for rare earth element uptake in hyperaccumulator Dicranopteris linearis. Environ Sci Technol. 2023;57:6922–33.

    Article  CAS  Google Scholar 

  81. Barbera M, Zuddas P, Piazzese D, Oddo E, Lopes F, Censi P, et al. Accumulation of rare earth elements in common vine leaves is achieved through extraction from soil and transport in the xylem sap. Commun Earth Environ. 2023;4:291.

    Article  Google Scholar 

  82. Zhang P, Ma Y, Liu S, Wang G, Zhang J, He X, et al. Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut. 2017;220:1400–8.

    Article  CAS  Google Scholar 

  83. Le Jean M, Montargès-Pelletier E, Rivard C, Grosjean N, Chalot M, Vantelon D, et al. Locked up inside the vessels: rare earth elements are transferred and stored in the conductive tissues of the accumulating fern Dryopteris erythrosora. Environ Sci Technol. 2023;57:2768–78.

    Article  Google Scholar 

  84. Yang X, Pan H, Wang P, Zhao F-J. Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater. 2017;322:292–300.

    Article  CAS  Google Scholar 

  85. Zhao X, Zhang W, He Y, Wang L, Li W, Yang L, et al. Phytotoxicity of Y2O3 nanoparticles and Y3+ ions on rice seedlings under hydroponic culture. Chemosphere. 2021;263:127943.

    Article  CAS  Google Scholar 

  86. Moreira CG, Carvalho TSD, De Oliveira C, Abreu LBD, Castro ACSD, Ribeiro PG, et al. Ecological risk assessment of cerium for tropical agroecosystems. Chemosphere. 2019;221:124–31.

    Article  CAS  Google Scholar 

  87. Dai Y, Li T, Wang Z, Xing B. Physiological and proteomic analyses reveal the effect of CeO2 nanoparticles on strawberry reproductive system and fruit quality. Sci Total Environ. 2022;814:152494.

    Article  CAS  Google Scholar 

  88. Li X, Fan Y, Ma J, Gao X, Wang G, Wu S, et al. Cerium improves the physiology and medicinal components of Dendrobium nobile Lindl. under copper stress. J Plant Physiol. 2023;280:153896.

    Article  CAS  Google Scholar 

  89. White P, Broadley M, Oliveira C, Andrade-Vieira L, Guilherme L. Rare earth elements and plant disease. In: Datnoff LE, Elmer WH, Rodrigues FA, editors. Miner Nutr Plant Dis. 2nd ed. St. Paul: The American Phytopathological Society; 2023.

    Google Scholar 

  90. Jahani S, Saadatmand S, Mahmoodzadeh H, Khavari-Nejad RA. Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L. Biologia (Bratisl). 2019;74:1063–75.

    Article  CAS  Google Scholar 

  91. Dridi N, Brito P, Bouslimi H, Ferreira R, Martins-Dias S, Caçador I, et al. Physiological and biochemical behaviours and antioxidant response of Helianthus annuus under lanthanum and cerium stress. Sustainability. 2022;14:4153.

    Article  CAS  Google Scholar 

  92. Alp FN, Arikan B, Ozfidan-Konakci C, Ekim R, Yildiztugay E, Turan M. Rare earth element scandium mitigates the chromium toxicity in Lemna minor by regulating photosynthetic performance, hormonal balance and antioxidant machinery. Environ Pollut. 2023;316:120636.

    Article  CAS  Google Scholar 

  93. Salehi H, Chehregani A, Lucini L, Majd A, Gholami M. Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ. 2018;616–617:1540–51.

    Article  Google Scholar 

  94. Salgado OGG, Teodoro JC, Alvarenga JP, De Oliveira C, De Carvalho TS, Domiciano D, et al. Cerium alleviates drought-induced stress in Phaseolus vulgaris. J Rare Earths. 2020;38:324–31.

    Article  CAS  Google Scholar 

  95. Elbasan F, Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M. Rare-earth element scandium improves stomatal regulation and enhances salt and drought stress tolerance by up-regulating antioxidant responses of Oryza sativa. Plant Physiol Biochem. 2020;152:157–69.

    Article  CAS  Google Scholar 

  96. Cao Z, Rossi L, Stowers C, Zhang W, Lombardini L, Ma X. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environ Sci Pollut Res. 2018;25:930–9.

    Article  CAS  Google Scholar 

  97. Djanaguiraman M, Nair R, Giraldo JP, Prasad PVV. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega. 2018;3:14406–16.

    Article  CAS  Google Scholar 

  98. Kotelnikova AD, Rogova OB, Stolbova VV. Lanthanides in the soil: routes of entry, content, effect on plants, and genotoxicity (a review). Eurasian Soil Sci. 2021;54:117–34.

    Article  CAS  Google Scholar 

  99. Yin H, Wang J, Zeng Y, Shen X, He Y, Ling L, et al. Effect of the rare earth element lanthanum (La) on the growth and development of citrus rootstock seedlings. Plants. 2021;10:1388.

    Article  CAS  Google Scholar 

  100. Liu J, Li G, Chen L, Gu J, Wu H, Li Z. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. J Nanobiotechnology. 2021;19:153.

    Article  CAS  Google Scholar 

  101. Squadrone S, Brizio P, Stella C, Mantia M, Battuello M, Nurra N, et al. Rare earth elements in marine and terrestrial matrices of Northwestern Italy: implications for food safety and human health. Sci Total Environ. 2019;660:1383–91.

    Article  CAS  Google Scholar 

  102. Vodyanitskii Y, Minkina T, Bauer T. Sources of lanthanides in soils and estimation of their hazards. Geochem Explor Environ Anal. 2021;21(3). https://doi.org/10.1144/geochem2021-024.

  103. Simbanegavi TT, Gwenzi W. Ecological health risks of high-technology rare earth elements. In: Emerging contaminants in the terrestrial-aquatic-atmosphere continuum. Elsevier; 2022. p. 171–94. https://linkinghub.elsevier.com/retrieve/pii/B9780323900515000225.

  104. Bergsten-Torralba LR, Magalhães DP, Giese EC, Nascimento CRS, Pinho JVA, Buss DF. Toxicity of three rare earth elements, and their combinations to algae, microcrustaceans, and fungi. Ecotoxicol Environ Saf. 2020;201:110795.

    Article  CAS  Google Scholar 

  105. Li J, Verweij RA, Van Gestel CAM. Lanthanum toxicity to five different species of soil invertebrates in relation to availability in soil. Chemosphere. 2018;193:412–20.

    Article  CAS  Google Scholar 

  106. Huang X, He E, Qiu H, Zhang L, Tang Y, Zhao C, et al. Do toxicokinetic and toxicodynamic processes hold the same for light and heavy rare earth elements in terrestrial organism Enchytraeus crypticus? Environ Pollut. 2020;262:114234.

    Article  CAS  Google Scholar 

  107. Xu T, Zhang M, Hu J, Li Z, Wu T, Bao J, et al. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere. 2017;181:55–62.

    Article  CAS  Google Scholar 

  108. Allison JE, Boutin C, Carpenter D, Ellis DM, Parsons JL. Cerium chloride heptahydrate (CeCl3·7H2O) induces muscle paralysis in the generalist herbivore, Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae), fed contaminated plant tissues. Chemosphere. 2015;120:674–9.

    Article  CAS  Google Scholar 

  109. MacMillan GA, Chételat J, Heath JP, Mickpegak R, Amyot M. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic. Environ Sci Process Impacts. 2017;19:1336–45.

    Article  CAS  Google Scholar 

  110. Marginson H, MacMillan GA, Grant E, Gérin-Lajoie J, Amyot M. Rare earth element bioaccumulation and cerium anomalies in biota from the Eastern Canadian subarctic (Nunavik). Sci Total Environ. 2023;879:163024.

    Article  CAS  Google Scholar 

  111. Dai Y, Sun S, Li Y, Yang J, Zhang C, Cao R, et al. Residual levels and health risk assessment of rare earth elements in Chinese resident diet: a market-based investigation. Sci Total Environ. 2022;828:154119.

    Article  CAS  Google Scholar 

  112. Zhao C-M, Shi X, Xie S-Q, Liu W-S, He E-K, Tang Y-T, et al. Ecological risk assessment of neodymium and yttrium on rare earth element mine sites in Ganzhou. China Bull Environ Contam Toxicol. 2019;103:565–70.

    Article  CAS  Google Scholar 

  113. Shomar B, Sankaran R, Solano JR. Mapping of trace elements in topsoil of arid areas and assessment of ecological and human health risks in Qatar. Environ Res. 2023;225:115456.

    Article  CAS  Google Scholar 

  114. Posthuma L, Suter Ii GW, Traas TP, editors. Species sensitivity distributions in ecotoxicology. 0 ed. CRC Press; 2001. Available from: https://www.taylorfrancis.com/books/9781420032314.

  115. Pellegrino A, Vasiluk L, Hale B. Phytotoxicity effect concentrations (ECx) for Ce, Nd and Eu added to soil relative to total and bioaccessible soil REE concentrations, and tissue REE accumulations. Chemosphere. 2022;307:135723.

    Article  CAS  Google Scholar 

  116. Neaman A, Selles I, Martínez CE, Dovletyarova EA. Analyzing soil metal toxicity: spiked or field-contaminated soils? Environ Toxicol Chem. 2020;39:513–4.

    Article  CAS  Google Scholar 

  117. Gong B, He E, Qiu H, Li J, Ji J, Zhao L, et al. Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability. Environ Pollut. 2019;246:114–21.

    Article  CAS  Google Scholar 

  118. Galhardi JA, De Mello JWV, Wilkinson KJ. Bioaccumulation of potentially toxic elements from the soils surrounding a legacy uranium mine in Brazil. Chemosphere. 2020;261:127679.

    Article  CAS  Google Scholar 

  119. Rezaee A, Hale B, Santos RM, Chiang YW. Accumulation and toxicity of lanthanum and neodymium in horticultural plants (Brassica chinensis L. and Helianthus annuus L.). Can J Chem Eng. 2018;96:2263–72.

    Article  CAS  Google Scholar 

  120. • Balaram V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front. 2019;10:1285–303. Review covering relevant aspects of REE and describing advances in REE determination.

    Article  CAS  Google Scholar 

  121. Pagano G, Thomas PJ, Di Nunzio A, Trifuoggi M. Human exposures to rare earth elements: present knowledge and research prospects. Environ Res. 2019;171:493–500.

    Article  CAS  Google Scholar 

  122. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Paolini MA, Murray DL, et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology. 2017;285:546–54.

    Article  Google Scholar 

  123. Ranga A, Agarwal Y, Garg K. Gadolinium based contrast agents in current practice: risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging. 2017;27:141–7.

    Article  Google Scholar 

  124. Fan G, Yuan Z, Zheng H, Liu Z. Study on the effects of exposure to rare earth elements and health-responses in children aged 7–10 years. Wei Sheng Yan Jiu. 2004;33:23–8.

    Google Scholar 

  125. Cheng J, Li N, Cai J, Cheng Z, Hu R, Zhang Q, et al. Organ histopathological changes and its function damage in mice following long-term exposure to lanthanides chloride. Biol Trace Elem Res. 2012;145:361–8.

    Article  CAS  Google Scholar 

  126. Vocaturo G, Colombo F, Zanoni M, Rodi F, Sabbioni E, Pietra R. Human exposure to heavy metals. Chest. 1983;83:780–3.

    Article  CAS  Google Scholar 

  127. Rucki M, Kejlova K, Vlkova A, Jirova D, Dvorakova M, Svobodova L, et al. Evaluation of toxicity profiles of rare earth elements salts (lanthanides). J Rare Earths. 2021;39:225–32.

    Article  CAS  Google Scholar 

  128. Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, et al. Cryptic footprints of rare earth elements on natural resources and living organisms. Environ Int. 2019;127:785–800.

    Article  CAS  Google Scholar 

  129. Dushyantha N, Batapola N, Ilankoon IMSK, Rohitha S, Premasiri R, Abeysinghe B, et al. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev. 2020;122:103521.

    Article  Google Scholar 

  130. Zhuang M, Zhao J, Li S, Liu D, Wang K, Xiao P, et al. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere. 2017;168:578–82.

    Article  CAS  Google Scholar 

  131. Zhuang M, Wang L, Wu G, Wang K, Jiang X, Liu T, et al. Health risk assessment of rare earth elements in cereals from mining area in Shandong, China. Sci Rep. 2017;7:9772.

    Article  Google Scholar 

  132. Xie M, Chang H, Zhou X, Zhu J, Chen Z, Yang T, et al. Geochemical characteristics and factors of transfer and accumulation of rare earth elements in rock-soil-tea of the Mengku Tea Region in Yunnan Province, China. Sustainability. 2023;15:4836.

    Article  CAS  Google Scholar 

  133. Yang D, Sui H, Mao W, Wang Y, Yang D, Zhang L, et al. Dietary exposure assessment of rare earth elements in the Chinese population. Int J Environ Res Public Health. 2022;19:15583.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for supporting their research with rare earth elements over the last 10 years. Special thanks go to the National Institute of Science and Technology on Soil and Food Security (CNPq grant #406577/2022-6) and to all authors who kindly replied with their enlightening feedback to our survey. The authors would like to thank Instituto Tecnológico Vale and Vale for the scolarships provided.

Funding

National Institute of Science and Technology on Soil and Food Security (CNPq grant #406577/2022-6), FAPEMIG grant APQ-00826-19 and CNPq grant 304560/2023-5.

Author information

Authors and Affiliations

Authors

Contributions

All authors collaborated on writing and reviewing the manuscript as well as on preparing questions and searching collaborators for our survey. P.G.R. and C.O. wrote mainly the text about REE in plants. M.B.B.G and T.S.C. wrote mainly the text about REE in soils, including sources. G.C.M., W.V.S.P., and S.J.R. wrote mainly the text about ERA and HHRA of REE. L.R.G.G. wrote mainly the introduction and the survey summary, carried out final editing, and provided funding.

Corresponding author

Correspondence to Luiz Roberto Guimarães Guilherme.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, P.G., de Oliveira, C., Guerra, M.B.B. et al. Rare Earths as Emerging Trace Element Contaminants in the Soil. Curr Pollution Rep (2024). https://doi.org/10.1007/s40726-024-00312-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40726-024-00312-y

Keywords

Navigation