Skip to main content

Advertisement

Log in

Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Determining heavy metal background concentrations in soils is fundamental in order to support the monitoring of potentially contaminated areas. This is particularly important to areas submitted to high environmental impact where an intensive and local monitoring is required. To this end, the aim of this study was to establish background concentrations and quality reference values (QRVs) for the heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg in an environmentally impacted watershed from Brazil. Geochemical associations among Fe, Mn, and trace elements were also assessed to provide an alternative tool for establishing background concentrations. A total of one hundred and four samples comprised twenty-six composite soil samples from areas of native forest or minimal anthropic influence. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES, except for As and Hg measured by atomic absorption spectrophotometer. Background concentrations of heavy metals in soils had the following decreasing order: Fe > Mn > Zn > Cr > Pb > Ni > Cu > As > Cd > Hg. These values were usually lower than those observed in the international and national literature. The QRVs for Ipojuca watershed followed the order (mg kg−1) Fe (13,020.40) > Mn (91.80) > Zn (30.12) > Cr (15.00) > Pb (13.12) > Cu (3.53) > Ni (3.30) > As (0.51) > Cd (0.08) > Hg (0.04). Significant correlation among Fe, Mn, and heavy metals shows that solubilization by the method 3051A provides a reasonable estimate for predicting background concentrations for Cd, Cr, and Cu as well as Zn, Cr, Cu, and Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akkajit, P., & Tongcumpou, C. (2010). Fractionation of metals in cadmium contaminated soil: relation and effect on bioavailable cadmium. Geoderma, 156, 126–132.

    Article  CAS  Google Scholar 

  • Alfaro, M. R., Montero, A., Ugarte, O. M., Nascimento, C. W. A., Accioly, A. M. A., Biondi, C. M., & Silva, Y. J. A. B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment. doi:10.1007/s10661-014-4198-3.

    Google Scholar 

  • Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment, 264, 127–139.

    Article  CAS  Google Scholar 

  • Bini, C., Sartori, G., Wahsha, M., & Fontana, S. (2011). Background levels of trace elements and soil geochemistry at regional level in NE Italy. Journal of Geochemical Exploration, 109, 125–133.

    Article  CAS  Google Scholar 

  • Biondi, C. M., Nascimento, C. W. A., Fabricio Neta, A. B., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo, 35, 1057–1066.

    Article  CAS  Google Scholar 

  • Brummer, G. W., Gerth, J., & Herms, U. (1986). Heavy metal species, mobility and availability in soils. Ztg Pflanz Bodenkunde, 149, 382–398.

    Article  Google Scholar 

  • Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of yelagiri hills, tamilnadu, India–spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589–600.

    Article  CAS  Google Scholar 

  • Chen, J., Wei, F., Zheng, C., Wu, Y., & Adrian, D. C. (1991). Background concentrations of elements in soils of China. Water, Air, & Soil Pollution, 57–58, 699–712.

    Article  Google Scholar 

  • Chen, K., Jiao, J. J., Huang, J., & Huang, R. (2007). Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environmental Pollution, 147, 771–780.

    Article  CAS  Google Scholar 

  • Companhia de Tecnologia de Saneamento Ambiental – Cetesb. (2005). Decisão da diretoria n° 195/2005. Valores orientadores para solos e águas subterrâneas do estado de São Paulo. pp. 4.

  • Conselho Nacional do Meio Ambiente—CONAMA. (2009). Resolution No. 420 of December 28, 2009. Provides guiding values and criteria of soil quality for the presence of chemicals and establishes guidelines for environmental management of areas contaminated by these substances as a result of anthropogenic activities. Brasília. Available in: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi0620. Accessed 3 November 2013. (in Portuguese).

  • Costa, W. P., Nascimento, C. W. A., Biondi, C. M., & Souza Junior, V. S. (2014). Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Revista Brasileira de Ciência do Solo, 38, 1028–1037.

    Article  Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/Technology, 12, 335–353.

    Article  CAS  Google Scholar 

  • Esmaeili, A., Moore, F., Keshavarzi, B., Jaafarzadeh, N., & Kermani, M. (2014). A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena, 121, 88–98.

    Article  CAS  Google Scholar 

  • Fabricio Neta, A. B. (2012). Teores naturais de metais pesados em solos da ilha de Fernando de Noronha, 37p (MS dissertation) Universidade Federal Rural de Pernambuco, Recife.

  • Fadigas, F. S., Sobrinho, N. M. B. A., Mazur, N., Anjos, L. H. C., & Freixo, A. A. (2002). Concentrações naturais de metais pesados em algumas classes de solos brasileiros. Bragantia, 61(2), 151–159.

    Article  CAS  Google Scholar 

  • Fadigas, F. S., Sobrinho, N. M. B. A., Mazur, N., Anjos, L. H. C., & Mazur, N. (2010). Background levels of some trace elements in weathered soils from the Brazilian Northern region. Scientia Agricola, 67(1), 53–59.

    Article  CAS  Google Scholar 

  • Hamon, R. E., McLaughlin, M. J., Gilkes, R. J., Rate, A. W., Zarcinas, B., Robertson, A., Cozens, G., Radford, N., & Bettenay, L. (2004). Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles, 18, 1–6.

    Article  Google Scholar 

  • Hejabi, A. T., Basavarajappa, H. T., Karbassi, A. R., & Monavari, S. M. (2011). Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental Monitoring and Assessment, 182, 1–13.

    Article  CAS  Google Scholar 

  • Horckmans, L., Swennen, R., Deckers, J., & Maquil, R. (2005). Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxembourg. Catena, 59, 279–304.

    Article  CAS  Google Scholar 

  • Jennings, A. A. (2013). Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination. Journal of Environmental Management, 118, 72–95.

    Article  CAS  Google Scholar 

  • Jo, I. S., & Koh, M. H. (2004). Chemical changes in agricultural soils of Korea: data review and suggested counter measures. Environmental Geochemistry and Health, 26, 105–117.

    Article  CAS  Google Scholar 

  • Kaidao, F. U., Bin, S. U., Daming, H. E., Xixi, L. U., Jingyi, S., & Jiangcheng, H. (2012). Pollution assessment of heavy metals along the Mekong River and dam effects. Journal of Geographical Sciences, 22(5), 874–884.

    Article  Google Scholar 

  • Kaiser, H. F. (1958). The Varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.

    Article  Google Scholar 

  • Kookana, R. S., Naidu, R., Barry, D. A., Tran, Y. T., & Bajracharya, K. (1999). Sorption–desorption equilibria and dynamics of cadmium during transport in soil. In H. M. Selim, & A. Iskandar (Eds.), Fate and transport of heavy metals in the vadose zone (pp. 59–90). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Lv, J., Liu, Y., Zhang, Z., Dai, J., Dai, B., & Zhu, Y. (2014). Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. Journal of Soils and Sediments. doi:10.1007/s11368-014-0937-x.

    Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.

    Article  Google Scholar 

  • Nanos, N., & Martín, J. A. R. (2012). Multiscale analysis of heavy metal contents in soils: spatial variability in the Duero river basin (Spain). Geoderma, 189–190, 554–562.

    Article  Google Scholar 

  • National Institute of Standards and Technology - NIST. Standard Reference Materials -SRM 2709, 2710 and 2711 Addendum Issue Date: 18 January 2002.

  • Oliveira, V. H., Abreu, C. A., Coelho, R. M., & Melo, L. C. A. (2014). Cadmium background concentrations to establish reference quality values for soils of São Paulo State, Brazil. Environmental Monitoring and Assessment, 186, 1399–1408.

    Article  Google Scholar 

  • Palumbo, B., Angelone, M., Bellanca, A., Dazzi, C., Hauser, S., Neri, R., & Wilson, J. (2000). Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma, 95, 247–266.

    Article  CAS  Google Scholar 

  • Paye, H. S., Mello, J. W. V., Abrahão, W. A. P., Filho, E. I. F., Dias, L. C. P., Castro, M. L. O., Melo, S. B., & França, M. M. (2010). Reference quality values for heavy metals in soils from Espírito Santo State, Brazil. Revista Brasileira de Ciência do Solo, 34, 2041–2051 (in Portuguese with English Abstract).

    Article  Google Scholar 

  • Ramos-Miras, J. J., Roca-Perez, L., Guzmán-Palomino, M., Boluda, R., & Gil, C. (2011). Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). Journal of Geochemical Exploration, 110, 186–192.

    Article  CAS  Google Scholar 

  • Salonen, V. P., & Korkka-Niemi, K. (2007). Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22, 906–918.

    Article  CAS  Google Scholar 

  • Santos, S. N., & Alleoni, L. R. F. (2012). Reference values for heavy metals in soils of the Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment, 185, 5737–5748.

    Article  Google Scholar 

  • Sayadi, M. H., & Sayyed, M. R. G. (2011). Comparative assessment of baseline concentration of the heavy metals in the soils of Tehran (Iran) with the comprisable reference data. Environmental Earth Sciences, 63, 1179–1188.

    Article  CAS  Google Scholar 

  • Shah, M. H., Iqbal, J., Shaheen, N., Khan, N., Choudhary, M. A., & Akhter, G. (2012). Assessment of background levels of trace metals in water and soil from a remote region of Himalaya. Environmental Monitoring and Assessment, 184, 1243–1252.

    Article  CAS  Google Scholar 

  • Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 23, 2198–2213.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency – USEPA. (1996). Soil screening guidance: user’s guide. Second Edition. Washington.

  • United States environmental protection agency – USEPA. (1998). Method 3051a—microwave assisted acid digestion of sediments, sludges, soils, and oils.

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Brazilian Government, MEC/MCTI/CAPES/CNPq/FAPs EDITAL N° 61/2011-Science Without Borders Program, project number (402603/2012-5), and by FACEPE process number (IBPG-0889-5.01/11).

Conflict of interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Jacques Agra Bezerra da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, Y.J.A.B., do Nascimento, C.W.A., Cantalice, J.R.B. et al. Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environ Monit Assess 187, 558 (2015). https://doi.org/10.1007/s10661-015-4782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4782-1

Keywords

Navigation