Skip to main content

Advertisement

Log in

Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Contamination of aquatic systems with potentially toxic trace elements (PTEs) is a major problem throughout the world. The National Park Tablas de Daimiel (NPTD) is considered to make up one of the two most important wetlands in the Biosphere Reserve called “Wet Spot.” Since PTEs are good indicator of the prevailing environmental conditions and possible contamination, soil samples collected from 43 sites were analyzed in order to investigate the levels and its distribution of these elements, in the inundated floodplain area of the NPTD wetland. In addition, some physicochemical parameters such as pH, electrical conductivity and organic matter were measured. The total concentrations of 32 trace elements were determined by X-ray fluorescence. The results show that there was accumulation of lead (Pb), tin (Sn), selenium (Se), antimony (Sb), copper (Cu), vanadium (V), nickel (Ni), zinc (Zn), arsenic (As), strontium (Sr) and zirconium (Zr)—in some cases at high concentrations. The interpolated maps showed that the distributions of some of these elements and in some cases the trend in spatial variability are pronounced and decrease from the inlet to the outlet. The values for some elements are higher than the reference values, which is consistent with contamination (some values are higher by a factor of more than 10 compared to the reference). In the case of iodine (I), the levels at some sample points are significantly more than ten times the reference; Se appears in the range from 1.0 to 9.8 mg/kg, with an average value of 3.1 mg/kg, and these can be considered as seleniferous soils. The concentrations found are consistent with the introduction in the wetland of pollution by human activities, such as agricultural non-point sources, uncontrolled fertilization over many years, treatment with urban wastewater and other possible sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahim, G. M. S. (2005). Holocene sediments of Tamaki Estuary: Characterisation and impact of recent human activity on an urban estuary in Auckland, New Zealand. PhD thesis, University of Auckland, Auckland, New Zealand.

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Al-Juboury, A. I. (2009). Natural pollution by some heavy metals in the Tigris River, Northern Iraq. International Journal of Environmental Research, 3(2), 189–198.

    CAS  Google Scholar 

  • Álvarez-Cobelas, M., Cirujano, S., & Sánchez-Carrillo, S. (2001). Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biological Conservation, 97, 89–98.

    Article  Google Scholar 

  • Álvarez-Rogel, J., Jiménez-Cárceles, F. J., & Egea, C. (2006). Phosphorus and nitrogen content in the water of a coastal wetland in the Mar Menor lagoon (SE Spain): Relationships with effluents from urban and agricultural areas. Water, Air, and Soil pollution, 173, 21–38.

    Article  Google Scholar 

  • Alvim-Ferraz, M. C. M., & Lourenço, J. C. N. (2000). The influence of organic matter content of contaminated soils on the leaching rate of heavy metals. Environmental Progress, 19, 53–58.

    Article  Google Scholar 

  • Anderson, A., & Nilsson, K. O. (1972). Enrichment of trace elements from sewage sludge fertilizer in soils and plants. Ambio, 1, 176–179.

    Google Scholar 

  • Anne, A. (1945). Sur le dosage rapide du carbone organique de sols. Ann Agron, 2, 161–172.

    Google Scholar 

  • Atiemo, M. S., Ofosu, G. F., Kuranchie-Mensah, H., Tutu, A. O., Palm, N. D., & Blankson, S. A. (2011). Contamination assessment of heavy metals in road dust from selected roads in Accra, Ghana. Research Journal of Environmental and Earth Sciences, 3(5), 473–480.

    CAS  Google Scholar 

  • Avril, C. (1992). Les apports en Cd aux terres par les intrants agricoles et leur gestion. Agrosol, 5, 39–45.

    Google Scholar 

  • Bai, J. H., Yang, Z. F., Cui, B. S., Gao, H., & Ding, Q. (2010). Some heavy metal distributions in wetland soils under different land use types in a typical plateau lakeshore, China. Soil & Tillage Research, 106(2), 344–348.

    Article  Google Scholar 

  • Böhme, F., Rinklebe, J., Stark, H. J., Mothes, S., & Neue, H. U. (2005). A simple field method to determine mercury volatilization from soils. Environmental Science and Pollution Research, 12, 133–135.

    Article  Google Scholar 

  • Boncompagni, E., Muhammad, A., Jabeen, R., Orvini, E., Gandini, C., Sanpera, C., et al. (2003). Egrets as monitors of trace-metal contamination in wetlands of Pakistan. Archives of Environmental Contamination and Toxicology, 45(3), 399–406. doi:10.1007/s00244-003-0198-y.

    Article  CAS  Google Scholar 

  • Bravo, S., Amóros, J. A., Pérez-de-los-Reyes, C., García-Navarro, F. J., Ruedas, R., & Jimenez-Ballesta, R. (2015). Natural enrichment of trace elements in surface horizons of calcareous soil (La Mancha, Spain). Journal of Chemistry,. doi:10.1155/2015/606837.

    Google Scholar 

  • Brevik, E., Calzolari, C., Miller, B. A., Pereira, P., Kabala, C., Baumgarten, A., et al. (2016). Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma, 264, 256–274.

    Article  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Article  Google Scholar 

  • Charkhabi, A. H., Sakizadeh, M., & Rafiee, G. (2005). Seasonal fluctuation in heavy metal pollution in Iran’s Siahroud River. Environmental Science and Pollution Research, 12, 264–270.

    Article  CAS  Google Scholar 

  • Cheung, K. C., Poon, B. H. T., Lan, C. Y., & Wong, M. H. (2003). Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere, 52(9), 1431–1440.

    Article  CAS  Google Scholar 

  • Christine, F., Conrad, A., Catherine, J., & Chisholm-Brause, B. (2004). Spatial survey of trace metal contaminants in the sediments of the Elizabeth River, Virginia. Marine Pollution Bulletin, 49, 319–324.

    Article  Google Scholar 

  • Cirujano, S., Casado, C., Bernués, M., & Camargo, J. A. (1996). Ecological study of Las Tablas de Daimiel National Park (Ciudad Real, central Spain): Differences in water physico-chemistry and vegetation between 1974 and 1989. Biological Conservation, 75(3), 211–215. doi:10.1016/0006-3207(95)00079-8.

    Article  Google Scholar 

  • Conde, P., Bellido, E., Martín-Rubí, J. A., & Jiménez-Ballesta, R. (2008). Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environmental Geology, 56(5), 815–824. doi:10.1007/s00254-007-1182-z.

    Google Scholar 

  • Conde, P., Martín-Rubí, J. A., De La Horra, J., & Jiménez-Ballesta, R. (2009). Trace element contents in different soils of a semiarid Mediterranean environment: Castilla-La Mancha, Spain. Fresenius Environmental Bulletin, 18(5b), 858–867.

    Google Scholar 

  • De la Hera, A., & Villarroya, F. (2013). Services evolution of two groundwater dependent wetland ecosystems in the “Mancha Húmeda” Biosphere Reserve (Spain). Resources, 2, 128–150. doi:10.3390/resources2020128.

    Article  Google Scholar 

  • Du Laing, G., De Meyer, B., Meers, E., Lesage, E., Van de Moortel, A. M. K., & Tack, F. M. G. (2008). Metal accumulation in intertidal marshes: Role of sulphide precipitation. Wetlands, 28(3), 735–746. doi:10.1672/07-103.1.

    Article  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Du Laing, G., Vandecasteele, B., De Grauwe, P., Moors, W., Lesage, E., Meers, E., et al. (2007). Factors affecting metal concentrations in the upper sediment layer of intertidal reed beds along the river Scheldt. Journal of Environmental Monitoring, 9, 449–455. doi:10.1039/b618772b.

    Article  Google Scholar 

  • Duffus, J. H. (2002). Heavy metals—A meaningless term? Pure and Applied Chemistry, 74, 793–807. Available on the IUPAC website at: http://www.iupac.org/publications/pac/2002/7405/7405x0793.htm.

  • Feng, L., Wen, Y. M., & Zhu, P. T. (2008). Bioavailability and toxicity of heavy metals in a heavily polluted river, in PRD, China. Bulletin of Environmental Contamination and Toxicology, 81, 90–94.

    Article  Google Scholar 

  • Förstner, U., Heise, S., Schwartz, R., Westrich, B., & Ahlf, W. (2004). Historical contaminated sediments and soils at the river basin scale—Examples from the Elbe River catchment area. Journal of Soils and Sediments, 4(4), 247–260.

    Article  Google Scholar 

  • Friese, K., Witter, B., Brack, W., Buettner, O., Krueger, F., Kunert, M., et al. (2000). Distribution and fate of organic and inorganic contaminants in a river floodplain—Results of a case study on the river Elbe, Germany. Remediation engineering of contaminated soils (pp. 373–426). New York: Marcel Dekker.

    Google Scholar 

  • García, L. L., & Poleto, C. (2014). Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (Igeo). Journal of Soils and Sediments, 14(7), 1251–1257.

    Article  Google Scholar 

  • He, W., & Lu, J. (2001). Distribution of Cd and Pb in a wetland ecosystem. Science in China, 44, 178–184.

    Article  Google Scholar 

  • Hooda, P. S. (2010). Trace elements in soils. Chichester: Wiley.

    Book  Google Scholar 

  • Hutchinson, S. M., & Rothwell, J. J. (2007). Mobilisation of sediment-associated metals from historical Pb working sites on the River Sheaf. Sheffield: Environmental Pollution. doi:10.1016/j.2007.10.033.

    Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, U. K. (2005). Metal pollution assessment of sediment and water in the river Hindon, India. Environmental Monitoring and Assessment, 105, 193–207.

    Article  CAS  Google Scholar 

  • Jernstrom, J., Lehto, J., Dauvalter, V. A., Hatakka, A., Leskinen, A., & Paatero, J. (2010). Heavy metals in bottom sediments of Lake Umbozero in Murmansk Region, Russia. Environmental Monitoring and Assessment, 161(1–4), 93–105.

    Article  CAS  Google Scholar 

  • Jiménez-Ballesta, R., Conde, Bueno P., Martín Rubí, J. A., & García Giménez R., A. (2010). Pedo-geochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla La Mancha, Spain). Central European Journal of Geosciences, 2(4), 441–454. doi:10.2478/v10085-010-0028-1.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soils and plants (p. 315). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Keller, B. E. M., Lajtha, K., & Cristofor, S. (1998). Trace metal concentrations in the sediments and plants of the Danube Delta, Romania. Wetlands, 18, 42–50.

    Article  Google Scholar 

  • Lejeune, K., Galbraith, H., Lipton, J., & Kapustka, L. A. (1996). Effects of metals and arsenic on riparian communities in southwest Montana. Ecotoxicology, 5, 297–312.

    Article  CAS  Google Scholar 

  • Liu, W. X., Li, X. D., Shen, Z. G., Wang, D. C., Wai, O. W. H., & Li, Y. S. (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environmental Pollution, 121, 377–388.

    Article  CAS  Google Scholar 

  • Lokeshwari, H., & Chandrappa, G. T. (2006). Heavy metals content in water, water hyacinth and sediments of Lalbagh tank, Bangalore (India). Journal of Environmental Engineering and Science, 48(3), 183–188.

    CAS  Google Scholar 

  • Mahmoud, E., & Abd El-Kader, N. (2014). Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degradation and Development, 26(8), 819–824.

    Article  Google Scholar 

  • Marin, A., Andrades, M., Iñigo, V., & Jiménez-Ballesta, R. (2015). Mn and Ni contents in soils of a qualified denomination of origin region: Rioja D.O.Ca Spain. International Journal of Environmental Studies,. doi:10.1080/00207233.2015.1082250.

    Google Scholar 

  • Mejías, M. (2014). El agua protagonista a través de los siglos. In M. Mejías (Ed.), Las Tablas y los Ojos del Guadiana: agua, paisaje y gente (pp. 15–64). Madrid: IGME-OAPN.

    Google Scholar 

  • Mejías, M., López, J., & Martínez, L. (2012). Características hidrogeológicas y evolución piezométrica de la Mancha Occidental. Influencia del periodo húmedo 2009–2011. Boletín Geológico y Minero, 123(2), 91–108.

    Google Scholar 

  • Mitra, S., Wassman, R., & Vlek, P. (2005). An appraisal of global wetland area and its organic carbon stock. Current Science, 88, 25–35.

    CAS  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000a). The value of wetlands: Importance of scale and landscape setting. Ecological Economics, 35, 25–33.

    Article  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000b). Wetlands (3rd ed.). New York: Wiley.

    Google Scholar 

  • Moreno, L., De la Losa, A., Jiménez-Hernández, M. E., Aguilera, H., & Castaño, S. (2000). Influencia del zanjón del río Gigüela sobre el humedal del Parque Nacional de las Tablas de Daimiel (España) en periodo de sequía. Cuaternario y Geomorfología, 27(1–2), 111–128.

    Google Scholar 

  • Müller, G. (1979). Schwermetalle in den Sedimenten des Rheins – Veränderungen seit 1971. Umschau in Wissenschaft und Technik, 79(24), 778–783.

    Google Scholar 

  • Munsell Color Company Inc. (1954). Munsell soil color charts. Baltimore, MD: Munsell Color Company Inc.

    Google Scholar 

  • Nguessan, Y. M., Probst, J. L., Bur, T., & Probst, A. (2009). Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): Where do they come from? Science of the Total Environment, 407, 2939–2952.

    Article  CAS  Google Scholar 

  • Overesch, M., Rinklebe, J., Broll, G., & Neue, H. U. (2007). Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environmental Pollution, 145, 800–812.

    Article  CAS  Google Scholar 

  • Peech, M. (1965). Hydrogen-ion activity. In C. A. Black (Ed.), Methods of soil analysis, Part II, chemical and microbiological properties (pp. 914–926). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Plant, J. A., Klaver, G., Locutura, J., Salminen, R., Vrana, K., & Fordyce, F. M. (1997). The Forum of European Geological Surveys Geochemistry Task Group inventory 1994–1996. Journal of Geochemical Exploration, 59, 123–146.

    Article  CAS  Google Scholar 

  • Prokisch, J., Szeles, E., Kovacs, B., Gyori, Z., Nemeth, T., & West, L. (2009). Sampling strategies for testing and evaluation of soil contamination in riparian systems at the Tisza River Basin, Hungary. Communications in Soil Science and Plant Analysis, 40, 391–406.

    Article  CAS  Google Scholar 

  • Ramos, C., & Ocio, J. A. (1992). La agricultura y la contaminación de aguas por nitratos. Hojas Divulgadoras (7/952HD) Ministerio de Agricultura, Pesca y Alimentación, Madrid.

  • Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: Science and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Handbook 60. Washington: U.S. Salinity Laboratory, U.S. Department of Agriculture.

    Google Scholar 

  • Robert, M., & Juste, C. (1997). Stocks et flux d’éléments traces dans les sols du territoire in « aspects sanitaires et environnementaux de l’épandage agricole des boues d’épuration urbaines, ADEME. Journées techniques des 5 et 6 Juin 1997 » (p. 320), Ademe éd.

  • Rodríguez-García, J. A. (1998). Geomorfología de las Tablas de Daimiel y del endorrismo manchego centro-occidental. Ph Tesis, Facultad Ciencias Geológicas, Universidad Complutense de Madrid.

  • Rodríguez-García, J. A., & Pérez-González, A. (1999). Clasificación geomorfológica de los humedales y fondos endorreicos de la Mancha centrooccidental. Geogaceta, 26, 83–86.

    Google Scholar 

  • Rodriguez-Murillo, J. C., Almendros, G., & Knicker, H. (2011). Wetland soil organic matter composition in a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain): Insight into different carbon sequestration pathways. Organic Geochemistry, 42, 762–773. doi:10.1016/j.orggeochem.2011.05.007.

    Article  CAS  Google Scholar 

  • Sacristán, D., Peñarroya, B., & Recatalá, L. (2015). Increasing the knowledge on the management of Cu-contaminated agricultural soils by cropping tomato (Solanum lycopersicum L.). Land Degradation and Development, 26(6), 587–595.

    Article  Google Scholar 

  • Saeedi, M., Li, L., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227, 9–17.

    Article  Google Scholar 

  • Sánchez-Carrillo, S. (2000). Hidrología y Sedimentación Actual de Las Tablas de Daimiel. Ph Tesis, Universidad Autónoma, Madrid, España.

  • Sánchez-Carrillo, S., & Álvarez-Cobelas, M. (2001). Nutrient dynamics and eutrophication patterns in a semi-arid wetland: The effects of fluctuating hydrology. Water, Air, and Soil pollution, 131, 97–118.

    Article  Google Scholar 

  • Senesi, G. S., Baldassare, G., Senesi, N., & Radina, B. (1999). Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere, 39, 343–377.

    Article  CAS  Google Scholar 

  • Sigg, L., Behra, P., & Stumm, W. (2006). Chimie des milieux aquatiques. Chimie des eaux naturelles et des interfaces dans l’environnement (4th ed., p. 564). Paris: Dunod.

    Google Scholar 

  • Singh, K., Mohan, D., Singh, V., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—A tributary of the Ganges, India. Journal of Hydrology, 312, 14–27.

    Article  CAS  Google Scholar 

  • Stosnach, H., & Mages, M. (2009). Analysis of nutrition-relevant trace elements in human blood and serum by means of total reflection X-ray fluorescence (TXRF) spectroscopy. Spectrochimica Acta, 64, 354–356.

    Article  Google Scholar 

  • Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society, 29, 344–358.

    Article  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (1999). Mangrove soils in removing pollutants from municipal wastewater of different salinities. Journal of Environmental Quality, 28, 556–564.

    Article  CAS  Google Scholar 

  • Toluna, L. G., Okaya, O. S., Gainesb, A. F., Tolayc, M., Tuefekceia, H., & Koratlod, N. (2001). The pollution status and the toxicity of surface sediments in Izmit Bay (Marmara Sea), Turkey. Environment International, 26, 63–168.

    Google Scholar 

  • Turner, R. E. (1997). Wetland loss in the Northern Gulf of Mexico: Multiple and the working hypotheses. Estuaries, 20, 1–13. doi:10.2307/1352716.JSTOR1352716.

    Article  Google Scholar 

  • Venugopal, T., Giridharan, L., & Jayaprakash, M. (2009). Characterization and risk assessment studies of bed sediments of River Adyar—An application of speciation study. International Journal of Environmental Research, 3(4), 581–598.

    CAS  Google Scholar 

  • Wälder, K., Wälder, O., Rinklebe, J., & Menz, J. (2008). Estimation of soil properties with geostatistical methods in floodplains. Archives of Agronomy and Soil Science, 54, 275–295.

    Article  Google Scholar 

  • Wcislo, E., Ioven, D., Kucharski, R., & Szdzuj, J. (2002). Human health risk assessment case study: An abandoned metal smelter site in Poland. Chemosphere, 47, 507–515.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology,. doi:10.5402/2011/40264.

    Google Scholar 

  • Zedler, J. B., & Kercher, S. (2005). Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30(1), 39–74.

    Article  Google Scholar 

  • Zhao, S., Feng, C. H., Wang, D. X., Liu, Y. Z., & Shen, Z. Y. (2013). Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: Relative role of sediments’ properties and metal speciation. Chemosphere, 91, 977–984.

    Article  CAS  Google Scholar 

  • Zhipeng, H., Jinming, S., Naixing, Z., Peng, Z., & Yayan, X. (2009). Variation characteristics and ecological risk of heavy metals in the south Yellow Sea surface sediments. Environmental Monitoring and Assessment, 157, 515–528.

    Article  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by the Autonomous Organization “Parques Naturales” of Spain. The authors thank the Director Basilio Rada and the Director of the NPTD Carlos Ruiz.

Funding was provided by Universidad de Castilla-La Mancha and Instituto Geologico de España.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jiménez-Ballesta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Ballesta, R., García-Navarro, F.J., Bravo, S. et al. Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain). Environ Geochem Health 39, 1159–1177 (2017). https://doi.org/10.1007/s10653-016-9884-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9884-3

Keywords

Navigation