Skip to main content
Log in

Historical Contaminated Sediments and Soils at the River Basin Scale

Examples from the Elbe River Catchment Area

  • The Feature
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Background, Aims, and Scope

Data from the Elbe River and its tributaries indicate, despite extensive improvement in water quality during the last 15 years, that the respective sediment situation of many priority pollutants has not reached an acceptable level. For the coming decades, risks for downstream sites and stakeholders will persist, mainly due to secondary sources originating from historical pollution of soils and sediments in the catchment area. In practice, a catchment-wide assessment of historical contaminated soil and sediment should apply a three-step approach: (i) Identification of substances of concern (s.o.c.) and their classification into ’hazard classes of compounds’; (ii) identification of areas of concern (a.o.c.) and their classification into ‘hazard classes of sites’; (iii) identification of areas of risk (a.o.r.) and their assessment relative to each other with regard to the probability of polluting the sediments in the downstream reaches. The conversion of this concept has to consider the underlying philosophy of the EU Water Framework Directive, particularly with respect to the analysis and monitoring of priority substances in solid matrices. However, major deficiencies are still in the assessment and prognosis of resuspension processes, and potential approaches to fill this gap are described both in theory and from examples of the Elbe River.

Methods

The sediment stability testing facilities consist of a unique triple set developed by innovative experimental laboratory and field research. The instrumental facilities consisting of a tube corer and a pressurized channel allow one to measure not only the onset of erosion (critical bed shear stress), but also the erosion rate for different sediment layers. Undisturbed sediment samples were taken from contaminated sites, e.g. in near-bank groyne fields and floodplains, using (i) core sampler (diameter 14 cm, length 150 cm) for sediment erodibility depth profiling and (ii) box sampler (30*70 cm2 top view area, 28 cm depth) for comparing and upscaling the results from the laboratory to the field. Sediment properties such as grain size spectrum (laser beam attenuation), water and gas content were analyzed by a non-intrusive, high frequency, capacity measurement method and bulk density by γ-ray.

Results and Discussion

Sediment core samples from flooded areas in the Middle Elbe indicate, that, except from the uppermost 5 cm and at a depth of from 47 to 48 cm, where the critical shear stress is very low (0.5 Pa), the critical bottom shear stress is between 1.2 Pa and 3.4 Pa, i.e. at a moderate level. Major reasons for the distinct heterogeneity of the erosion stability are differences in consolidation processes, grain size distribution and in the composition of stabilizing exudates in the individual sediment layers. Similar to the erosion stability depth profile, the metal data exhibit short-range heterogeneities; the variations in the individual layers can be explained by different proportions of fine grained components and by an improvement of suspended matter quality in the course of time. A comparison of the metal contents of embanked alluvial soils and unembanked alluvial areas suggests the following causal chain: Recent floodplain areas at low mean water levels exhibiting high concentrations of organic carbon represent the most highly contaminated sites. On the other hand, insignificant pollution has occurred on alluvial areas, which were embanked already at pre-industrial times. In the case of flood events, due to the combination of flooding probability and flow conditions, the most favorable conditions for the deposition of nutrient- and contaminant-rich suspended particulate matter are found in the low level depressions with low current. Within a typical river section of 1 km length in the lower middle Elbe, the groyne fields are recognized as dominant, slack-water zones containing the following nutrient and trace metal loads (reference year 2001, anthropogenic proportions): 287 t organic carbon, 17.6 t phosphorous, 17.4 t nitrogen, and 16.7 t sulfur; 8.6 t zinc, 1.1 t copper, 0.9 t lead, 0.4 t chromium, and 0.2 t nickel, respectively. The estimated nutrient and pollutant loads, deposited on the floodplains and in the river course, clearly demonstrate the specific sink function of both sites. At the same time, however, the results suggest, in contrast to the deposits in the floodplains, that sediments within the river course may partly be remobilized. This means that the longterm sink function can at least temporarily become a significant source character, involving the hazard of a substantial deterioration of the downstream sections of the river basin.

Conclusions and Outlook

In view of the findings of relative low erosion stabilities of groyne field sediments and, in particular, after the extreme Elbe flood from August 2002, a prime question relates to the remobilization risks of these sediments typically enriched in contaminants and nutrients. The combined view on substances, areas and processes of concern in the Elbe catchment - with special emphasis on historical contamination of floodplain soils and sediments, as well as on groyne field sediments, as significant secondary sources of pollution - is a typical example for the holistic river basin approach of the European Water Framework Directive (WFD), both with respect to assessment of ecological risks and the development of remediation measures. In the latter respect, recent developments in ‘soft’ (geochemical and biological) techniques on contaminated soils and sediments, both with respect to policy aspects as well as to technical developments have led to a stimulation of in-situ remediation options, such as sub-aqueous depots, active capping, and application of natural attenuation processes. Limited financial resources require a direction of investments to those sites with the highest efficiencies in risk reduction. Establishing a rough sediment dynamic model, building on tributary/Elbe dilution factors, sedimentation data, suspended particulate matter monitoring data as well as calculations of long-term costs and benefits, based on risk management, could be essential steps in a basin wide river management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlf W, Gratzer H (1999): Erarbeitung von Kriterien zur Ableitung von Qualitätszielen für Sedimente und Schwebstoffe - Entwicklung methodischer Ansätze, UBA-FB 98–119, Berlin, Germany

  • Ahlf W, Braunbeck T, Heise S, Hollert H (2002a): Sediment and soil quality criteria. In: Burden FR, McKelvie I, Förstner U, Günther A (eds) Environmental Monitoring Handbook. Chapter 17. McGraw-Hill, New York

    Google Scholar 

  • Ahlf W, Gratzer H, Heise S, Tiemann J (2002b): Gemeinsame Wirkung von geochemischen und toxischen Komponenten in Sedimenten. Schriftenreihe Wasserforschung 6, 7178

  • Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002c): A Guidance for the Assessment and Evaluation of Sediment Quality: A German Approach Based on Ecotoxicological and Chemical Measurements. J Soils & Sediments 2, 37–42

    Article  CAS  Google Scholar 

  • Anonymous (1998): Prognose gebruiksduur Slufterdepot 1997-1998. GWR Report No. 97–124/C, Dec. 1998, cit. Anonymous 2002

  • Anonymous (1999): Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste

  • Anonymous (2000):Comparison of Solutions for a Large Contamination Based on Different National Policies. ConSoil 2000, 7th Int Conf FZK7 TNO, 165 pp, Karlsruhe/Leipzig

  • Anonymous (2002): Die subaquatische Unterbringung von Baggergut in den Niederlanden (Sub-aquatic Depots of Dredged Material in The Netherlands). DEPOTEC, Amersfoort, and Strom- & Hafenbau, Hamburg. Report, January 2002, Hamburg

    Google Scholar 

  • Anonymous (2004a): The SedNet Strategy Paper. 13 p., June 4,2004. SedNet - Demand Driven, European Sediment Research Network - Proposal No. EVK-2001-00058 to EU Key Action 1 ‘Sustainable Management and Quality of Water’, 1.4.1 ‘Abatement of water pollution from contaminated land, landfills and sediments’ (1/2002-12/2004)

  • Anonymous (2004b): Evaluation of current gaps and recommendations for further actions in the field of environmental analysis and monitoring. METROPOLIS (Metrology in Support of EU Policy). Position Paper, March 2004, 8 pp, Verneuil-en-Halatte/France

    Google Scholar 

  • Apitz SE, White S (2003): A conceptual framework for river-scale sediment management. J Soils & Sediments 3, 132–138

    Article  Google Scholar 

  • Baborowoski M, von der Kammer F, Friese K (2004) Kolloide und Schadstoffe (Schwermetalle) in der Elbe bei Hochwasserereignissen. In: Geller W et al. (eds.): Schadstoffbelastung nach dem Elbehochwasser 2002, ISBN 3- 00-013615-0, Magdeburg, pp 287–304

    Google Scholar 

  • Babut M, Oen A, Hollert H, Apitz S, Heise S, White S (2005): Prioritization at catchment scale, risk ranking at local scale: suggested approaches. In: Heise S (ed): Sediment Risk Management and Communication. Final Report SedNet Working Group 5. Elsevier, Amsterdam (in prep.)

    Google Scholar 

  • Brack W, Schirmer K (2003): Effect-directed identification of oxygen and sulphur heterocycles as major polycyclic aromatic cytochrome P4501A-in- ducers in a contaminated sediment. Environ Sci Technol 37: 3062–3070

    Article  CAS  Google Scholar 

  • Brack W, Altenburger R, Ensenbach U, Möder M, Segner H, Schüürmann G (1999): Bioassay-Directed Identification of Organic Toxicants in River Sediment in the Industrial Region of Bitterfeld (Germany) - A Contribution to Hazard Assessment. Archives of Environmental Contamination and Toxicology 37, 164–174

    Article  CAS  Google Scholar 

  • Brack W, Schirmer K, Kind T, Schrader S, Schüürmann G (2002): Effectdirected fractionation and identification of cytochrome P4501A-inducing halogenated aromatic hydrocarbons in a contaminated sediment. Environ Toxicol Chem 21: 2654–2662

    Article  CAS  Google Scholar 

  • Brack W, Kind T, Schrader S, Moder M, Schüürmann G (2003): Polychlorinated naphthalenes in sediments from the industrial region of Bitterfeld. Environ Pollut 121: 81–85

    Article  CAS  Google Scholar 

  • Brils J, Salomons W, van Veen J (eds) (2004): SedNet Recommendations for Sediment Research Priorities Related to the Soil Clusters, 10 pp, February 2004, SedNet - Demand Driven, European Sediment Research Network - Proposal No. EVK-2001-00058 to EU Key Action 1 ‘Sustainable Management and Quality of Water’, 1.4.1 ’Abatement of water pollution from contaminated land, landfills and sediments’ (1/2002-12/2004)

  • Davis JW, Dekker T, Erickson, Magar V, Patmont C, Swindoll M (2004): Framework for evaluating the effectiveness of monitored natural recovery (MNR) as a contaminated sediment option. Working Draft of the Sediment Remediation Action Team under the Remediation Technological Development, June 2004, 11 pp

  • De Deckere, Tolhurst E, De Brouwer J (2001): Destabilization of cohesive intertidal sediments by infauna. In: Estuar Coastal Shelf Sci 53, 665–669

    Article  CAS  Google Scholar 

  • DiToro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1991): Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26, 96–101

    Article  Google Scholar 

  • Erickson MJ, Davis JW, Dekker T, Magar V, Patmont C, Swindoll M (2004): Sediment stability assessment to evaluate natural recovery as a viable remedy for contaminated sediments. Working Draft of the Sediment Remediation Action Team under the Remediation Technological Development, June 2004, 12 pp

  • Fengler G, Förstner U, Gust G (1999): Verifizierungsexperimente zur zeitverzögerten Metallfreisetzung aus Sedimenten in einer hydrodynamisch gesteuerten Erosionsapparatur. Annual Meeting Water Chemical Society, Regensburg, Karlsruhe. ISBN 3-924763-75-5, pp 240–243

    Google Scholar 

  • Förstner U (2002): Introduction to soils and sediments (Ch. 11); soil and sediment problems (Ch. 12); soil and sediment remediation (Ch. 13). In: Burden FR, McKelvie I, Förstner U, Guenther A (eds) Environmental Monitoring Handbook. McGraw-Hill New York

    Google Scholar 

  • Förstner U (2003): Geochemical techniques on contaminated sediments -, River basin view. ESPR - Environ Sci & Pollut Res 10, 58–68

    Article  CAS  Google Scholar 

  • Förstner U (2004a): Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach. Lakes & Reservoirs: Research and Management 9, 25–40

    Article  Google Scholar 

  • Förstner U (2004b): Traceability of sediment analysis. Trends Anal Chem 23, 217–236

    Article  CAS  Google Scholar 

  • Förstner U, Jacobs P (2004): Schwermetall-Freisetzung aus belasteten Uberflutungsflächen in Folge (bio-)chemischer und physikalischer Einflüsse. In: Geller W et al. (eds): Schadstoffbelastung nach dem Elbehochwasser 2002, ISBN 3-00-013615-0, Magdeburg, pp 275–286

    Google Scholar 

  • Förstner U, Gerth J, Lindemann M, Wittmann U (2001): Managing contaminated sediments -III. In-situ sediment treatment (Spittelwasser case study). J Soils & Sediments 1 (3) 181–187

    Article  Google Scholar 

  • Franke S, Heinzel N, Specht M, Francke W (2004): Organische Schadstoffe im Gebiet der Unteren Mulde - Non Target Screening: Analytik von Wasser, Grundwasser und Sediment - Ergebnisse und Konsequenzen. In: Geller W et al. (eds): Schadstoffbelastung nach dem Elbehochwasser 2002, ISBN 3-00-013615-0, Magdeburg, pp 206–223

    Google Scholar 

  • Friese K, Witter B, Brack W, Buettner O, Krüger F, Kunert M, Rupp H, Miehlich G, Gröngröft A, Schwartz R, van der Veen A, Zachmann DW (2000): Distribution and fate of organic and inorganic contaminants in a river floodplain - Results of a case study on the River Elbe, Germany. In: Wise DL et al. (eds): Remediation Engineering of Contaminated Soils, 2nd ed., Dekker, New York, pp 375–428

    Google Scholar 

  • Geller W, Ockenfeld K, Böhme M, Knöchel A (eds) (2003): Schadstoffbeiastung nach dem Elbe-Hochwasser 2002. Final Report Ad-hoc Project ‘Schadstoffuntersuchungen nach dem Hochwasser vom August 2002 - Ermittlung der Gefahrdungspotentiale an Elbe und Mulde. ISBN 3-00- 013615-0, Magdeburg, 462 pp

    Google Scholar 

  • Gerbersdorf SU, Jancke TH, Westrich B (2004): Resuspension of riverine sediments - Determined by physical, chemical and biological parameters, 11th Magdeburg Seminar on Waters in Central and Eastern Europe. UFZ Magdeburg, pp 37–41

  • Götz R, Steiner B, Friesel P, Roch K, Walkow F, Maaß V, Reincke H, Stachel B (1998): Dioxin (PCDD/F) in the River Elbe - investigations of their origin by multivariate statistical methods. Chemosphere 37, 1987–2002

    Google Scholar 

  • Haag I, Westrich B (2001): Correlating Erosion Threshold and Physicochemical Properties of Natural Cohesive Sediment. Proc IAHR Congress, Beijing, Theme D, Vol 2, 84–90

    Google Scholar 

  • Heininger P, Heise S, Ahlf W, Claus E, Pelzer J (2003): Elbe-Hochwasser 2002 - Schadstoffbelastung und Ökotoxizität von Sedimenten, Schwebstoffen und Auenbüden. Annual Congress Water Chemical Society, Division of the German Chemical Society (GDCh), Stade. Karlsruhe, pp 35–39

  • Heise S (ed) (2005): Sediment Risk Management and Communication. Elsevier, Amsterdam (in prep.)

  • Heise S, Apitz S, White S (2003): Risk Ranking for Risk Management. Report of SedNet Working group on Risk xVIanagement and Communication, 2nd workshop, Hamburg April 24–26,2003 <www.sednet.org/wg5> http://www.sednet.org/wg5

  • Heise S, Maafß V, Gratzer H, Ahlf W (2000): Ecotoxicological Sediment Classification - Capabilities and Potentials - Presented for Elbe River Sediments. BfG-Mitteilungen Nr. 22 - Sediment Assessment in European River Basins. Koblenz, pp 96–104

  • Heise S, Förstner U, Westrich B, Jancke T, Karnahl J, Salomons W, Schönberger H (2004): Inventory of Historical Contaminated Sediment in Rhine Basin and its Tributaries. Report on Behalf of the Port of Rotterdam (not yet published). Hamburg/Rotterdam, 223 pp

  • Hille J, Ruske R, Scholz RW, Walkow F(eds) (1992): Bitterfeld - Modellhafte ökologische Bestandsaufnahme einer kontaminierten Industrieregion. Erich Schmidt Verlag Berlin

    Google Scholar 

  • Hong J, Förstner U, Calmano W (1994): Effects of redox processes on acid producing potential and metal mobility in sediments. In: Hamelink JL, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability - Physical, Chemical and Biological Interactions. Lewis Publ., Boca Raton FL, pp 119–141

    Google Scholar 

  • Jacobs PH (2003): Monitoring of subaqueous depots with active barrier systems for contaminated dredged material using dialysis sampler and DGT probes. J Soils & Sediments 3, 100–107

    Article  CAS  Google Scholar 

  • Jacoub G (2004): Development of a 2-d numerical code of particulate contaminant transport in impounded rivers and flood retention reservoirs. Dissertation University of Stuttgart

  • Joziasse J, Van der Gun J (2000): In-situ remediation of contaminated sediments: Conceivable and feasible?! In: Contaminiated Soil 2000, Vol 1, pp. Thomas Telford London

    Google Scholar 

  • Juraschek M, Westrich B (1985): Flow transport capacity for suspended sediment. In: Proc 21st Cong Int Assoc Hydraulic Research, Vol B, Theme B (Part 2) Melbourne, 19-23 August 1985

  • Kern U (1997): Transport von Schweb- und Schadstoffen in staugeregelten Fließgewässern am Beispiel des Neckars; Institut für Wasserbau, Universität Stuttgart, Mitteilungen Heft 93, ISSN 0343-1150

    Google Scholar 

  • Kersten M, Förstner U (1991): Geochemical characterization of pollutant mobility in cohesive sediment. Geo-Marine Letters 11, 184–187

    Article  Google Scholar 

  • Knöchel A, Ockenfeld K (2004): Ergebnisse und Folgerungen - Ein Überblick. In: Geller W, Ockenfeld K, Böhme M, Knöchel A (eds), Schadstoffbelastung nach dem Elbe-Hochwasser 2002. Final Report BMBF-Ad- hoc-Coordinated Project BMBF-PTJ 0330492. UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig-Halle, pp 3-11

    Google Scholar 

  • Krüger F, Prange A, Jantzen E (1999): Ermittlung geogener Hintergrundwerte an der Mittelelbe und deren Anwendung in der Beurteilung von Unterwassersedimenten. Hamburger Bodenkundliche Arbeiten 44, 39–51

    Google Scholar 

  • Kuballa J, Wilken R-D, Jantzen E, Kwan KK, Chau YK (1995): Speciation and genotoxicity of butyltin compounds. Analyst 120: 667–673

    Article  CAS  Google Scholar 

  • Li C-C (2004): Deterministisch-stochastisches Berechnungskonzept zur Beurteilung der Auswirkungen erosiver Hochwasserereignisse in FlussStauhaltungen. Dissertation University of Stuttgart

  • Miehlich G (1994): Auen und Marschen als Senken für belastete Sedimente der Elbe. In: Guhr H et al. (eds): Die Elbe im Spannungsfeld zwischen Ö kologie und Ö konomie. 6th Magdeburger Gewässerschutzseminar. Teubner, Stuttgart, pp 307–312

    Google Scholar 

  • Pepelnik R, Niedergesäß R, Erbslöh B, Aulinger A, Prange A (2004): Längs-profiluntersuchungen zur Beurteilung von Auswirkungen des Hochwassers vom August 2002 auf die Wasser- und Sedimentqualität der Elbe. In: Geller W et al. (eds.): Schadstoffbelastung nach dem Elbehochwasser 2002, ISBN 3-00-013615-0, Magdeburg, pp 120–135

    Google Scholar 

  • Popp P, Kalbitz K, Oppermann G (1994): Application of solid-phase microextraction and gas chromatography with electron-capture and mass spectrometric detection for the determination of hexachlorcyclehexanes in soil solution. J Chromatography A 687, 133–140

    Article  CAS  Google Scholar 

  • Prange A, Furrer R, Einax JW (2000): Die Elbe und ihre Nebenflüsse - Belas- tung, Trends, Bewertung, Perspektiven. Prepared for ATV-DVWK Deutsche Vereinigung für Wasserwirtschaft, Abwasser, Abfall e.V, 168 pp

  • Quevauviller Ph (ed) (2002): Methodologies for Soil and Sediment Fractionation Studies. The Royal Society of Chemistry Cambridge UK, 180 pp Quevauviller Ph (2004): Traceability of environmental chemical measurements. Trends Anal Chem 23, 171–177

  • Salomons W (ed) (2004): European Catchments: Catchment Changes and their Impact on the Coast.Institute for Environmental Studies, Vrije Universiteit Amsterdam, 37 pp

  • Salomons W, Förstner U (1988): Environmental Management of Solid Waste - Dredged Material and Mine Tailings. Springer Berlin, 396 pp

  • Schwartz R (2001): Die Böden der Elbaue bei Lenzen und ihre möglichen Veränderungen nach Rückdeichung. Dissertation am Fachbereich Geowis- senschaften der Universität Hamburg. Hamburger Bodenkundliche Arbeiten 44, 391

  • Schwartz R, Kozerski HP (2003): Entry and deposits of suspended particulate matter in groyne fields in the Middle Elbe and its ecological relevance. Acta hydrochim hydrobiol 31, 391–399

    Article  CAS  Google Scholar 

  • Schwartz R, Kozerski HP (2004): Bestimmung des Gefahrenpotenzials feinkörniger Buhnenfeldsedimente für die Wasser- und Schwebstoffqualität der Elbe sowie den Stoffeintrag in Auen. In: Geller W, Ockenfeld K, Böhme M, Knöchel A (eds): Schadstoffbelastung nach dem Elbe-Hochwasser 2002, Magdeburg, pp 258–274

  • Schwartz R, Nebelsiek A, Gröngröft A (1999): Das Nähr- und Schadstoff- dargebot der Elbe im Wasserkörper sowie in den frischen schwebstoff- bürtigen Sedimenten am Messort Schnackenburg in den Jahren 1984- 1997. Hamburger Bodenkundliche Arbeiten 44, 65–83

    Google Scholar 

  • Schwartz R, Gerth J, Neumann-Hensel H, Walkow F, Förstner U (2004): Geochemisch-ökotoxikologische Charakterisierung und Bewertung der Schadstoffbelastung in der Spittelwasserniederung bei Jessnitz (Sachsen- Anhalt) als Grundlage zur Beurteilung natürlicher Rückhalteprozesse in Auenböden. Projekt 6.1, FZK 0330519. BMBF Status-Seminar ‘Kon- trollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sa- nierung kontaminierter Grundwässer und Böden’. UFZ Leipzig-Halle, pp 263–274

  • Shea D (1988): Developing national sediment quality criteria. Environ Sci Technol 22, 1256–1260

    Article  CAS  Google Scholar 

  • Spott D, Becker E (2000): Protokoll einer Wiederholungs-Meßfahrt auf der Mittelelbe. Prepared for Arbeitsgemeinschaft für die Reinhaltung der Elbe August 2000, 39 pp

  • Vink RJ (2002): Heavy Metal Fluxes in the Elbe and Rhine River Basins: Analysis and Modelling. Academisch Proefschrift. Vrije Universiteit Amsterdam

  • Westrich B, Kern U, Haag I (1999): Mobilität von Schadstoffen in den Sedimenten staugeregelter Flüsse - Dynamik und Bilanzierung von Schwebstoffen und Schwermetallen in einer Stauhaltungskette. WB 99/11 (VA21), Institut für Wasserbau, Universität Stuttgart

  • Westrich B, Schmid G (2004): Entwicklung und Einsatz eines mobilen Gerätes zur in-situ Bestimmung der Erosionsstabilität kontaminierter Feinsedi- mente. Final Report TB 2004/05-VA 49, University of Stuttgart

  • Witt O, Westrich B (2003): Quantification of erosion rates for undisturbed cohesive sediment cores by image analysis. Hydrobiologia 494, 271–276

    Article  Google Scholar 

  • Witt O, Keller M, ter Hulscher D, Lehmann M, Westrich B (2003): Untersuchungen zum Resuspensionsrisiko belasteter Sedimentablagerungen im Rhein. Vom Wasser 101, 189–204

    CAS  Google Scholar 

  • Zerling L, Müller A, Jendryschik K, Hanisch Ch, Arnold A (2001): Der Bitterfelder Muldestausee als Schadstoffsenke. Abh Sächsische Akad Wiss 59 (4) 69

    Google Scholar 

  • Zoumis T, Calmano W, Förstner U (2000): Demobilization of heavy metals from mine waters. Acta hydrochim hydrobiol 28, 212–218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Förstner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förstner, U., Heise, S., Schwartz, R. et al. Historical Contaminated Sediments and Soils at the River Basin Scale. J Soils & Sediments 4, 247–260 (2004). https://doi.org/10.1007/BF02991121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02991121

Keywords

Navigation