Skip to main content
Log in

Urinary stones as a novel matrix for human biomonitoring of toxic and essential elements

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Monitoring of body burden of toxic elements is usually based on analysis of concentration of particular elements in blood, urine and/or hair. Analysis of these matrices, however, predominantly reflects short- or medium-term exposure to trace elements or pollutants. In this work, urinary stones were investigated as a matrix for monitoring long-term exposure to toxic and essential elements. A total of 431 samples of urinary calculi were subjected to mineralogical and elemental analysis by infrared spectroscopy and inductively coupled plasma mass spectrometry. The effect of mineralogical composition of the stones and other parameters such as sex, age and geographical location on contents of trace and minor elements is presented. Our results demonstrate the applicability of such approach and confirm that the analysis of urinary calculi can be helpful in providing complementary information on human exposure to trace metals and their excretion. Analysis of whewellite stones (calcium oxalate monohydrate) with content of phosphorus <0.6 % has been proved to be a promising tool for biomonitoring of trace and minor elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abboud, I. A. (2008a). Analyzing correlation coefficients of the concentrations of trace elements in urinary stones. Jordan Journal of Earth and Environmental Sciences, 1(2), 73–80.

    Google Scholar 

  • Abboud, I. A. (2008b). Concentration effect of trace metals in Jordanian patients of urinary calculi. Environmental Geochemistry and Health, 30(1), 11–20.

    Article  CAS  Google Scholar 

  • Abboud, I. A. (2008c). Mineralogy and chemistry of urinary stones: Patients from north Jordan. Environmental Geochemistry and Health, 30(5), 445–463.

    Article  CAS  Google Scholar 

  • Atakan, I. H., Kaplan, M., Seren, G., Aktoz, T., Gul, H., & Inci, O. (2007). Serum, urinary and stone zinc, iron, magnesium and copper levels in idiopathic calcium oxalate stone patients. International Urology and Nephrology, 39(2), 351–356.

    Article  CAS  Google Scholar 

  • Batáriová, A., Spěváčková, V., Beneš, B., Čejchanová, M., Šmíd, J., & Černá, M. (2006). Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. International Journal of Hygiene and Environmental Health, 209(4), 359–366.

    Article  CAS  Google Scholar 

  • Bazin, D., Chevallier, P., Matzen, G., Jungers, P., & Daudon, M. (2007). Heavy elements in urinary stones. Urological Research, 35(4), 179–184.

    Article  CAS  Google Scholar 

  • Bazin, D., Daudon, M., Combes, C., & Rey, C. (2012). Characterization and some physicochemical aspects of pathological microcalcifications. Chemical Reviews, 112(10), 5092–5120.

    Article  CAS  Google Scholar 

  • Beneš, B., Spěváčková, V., Šmíd, J., Čejchanová, M., Kaplanová, E., Černá, M., et al. (2002). Determination of normal concentration levels of Cd, Pb, Hg, Cu, Zn and Se in urine of the population in the Czech Republic. Central European Journal of Public Health, 10(1–2), 3–5.

    Google Scholar 

  • Burgher, A., Beman, M., Holtzman, J. L., & Monga, M. (2004). Progression of nephrolithiasis: Long-term outcomes with observation of asymptomatic calculi. Journal of Endourology, 18(6), 534–539.

    Article  Google Scholar 

  • Carpentier, X., Bazin, D., Combes, C., Mazouyes, A., Rouziere, S., Albouy, P. A., et al. (2011). High Zn content of Randall’s plaque: A mu-X-ray fluorescence investigation. Journal of Trace Elements in Medicine and Biology, 25(3), 160–165.

    Article  CAS  Google Scholar 

  • Čejchanová, M., Wranová, K., Spěváčková, V., Krsková, A., Šmíd, J., & Černa, M. (2012). Human bio-monitoring study—toxic elements in blood of women. Central European Journal of Public Health, 20(2), 139–143.

    Google Scholar 

  • Černá, M., Krsková, A., Čejchanová, M., & Spěváčková, V. (2012). Human biomonitoring in the Czech Republic: An overview. International Journal of Hygiene and Environmental Health, 215(2), 109–119.

    Article  CAS  Google Scholar 

  • Chaudhri, M. A., Watling, J., & Khan, F. A. (2007). Spatial distribution of major and trace elements in bladder and kidney stones. Journal of Radioanalytical and Nuclear Chemistry, 271(3), 713–720.

    Article  CAS  Google Scholar 

  • Daudon, M., Dore, J. C., Jungers, P., & Lacour, B. (2004). Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urological Research, 32(3), 241–247.

    Article  Google Scholar 

  • Durak, I., Kilic, Z., Sahin, A., & Akpoyraz, M. (1992). Analysis of calcium, iron, copper and zinc contents of nucleus and crust parts of urinary calculi. Urological Research, 20(1), 23–26.

    Article  CAS  Google Scholar 

  • Esteban, M., & Castano, A. (2009). Non-invasive matrices in human biomonitoring: A review. [Review]. Environment International, 35(2), 438–449.

    Article  CAS  Google Scholar 

  • Giannossi, M. L., Summa, V., & Mongelli, G. (2013). Trace element investigations in urinary stones: A preliminary pilot case in Basilicata (Southern Italy). Journal of Trace Elements in Medicine and Biology, 27(2), 91–97.

    Article  CAS  Google Scholar 

  • Glowacki, L. S., Beecroft, M. L., Cook, R. J., Pahl, D., & Churchill, D. N. (1992). The natural history of asymptomatic urolithiasis. Journal of Urology, 147(2), 319–321.

    CAS  Google Scholar 

  • Hedayati, S. S., Minhajuddin, A. T., Ijaz, A., Moe, O. W., Elsayed, E. F., Reilly, R. F., et al. (2012). Association of urinary sodium/potassium ratio with blood pressure: Sex and racial differences. Clinical Journal of the American Society of Nephrology, 7(2), 315–322.

    Article  CAS  Google Scholar 

  • Horbarth, K., Koeberl, C., & Hofbauer, J. (1993). Rare-earth elements in urinary calculi. Urological Research, 21(4), 261–264.

    Article  Google Scholar 

  • Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363.

    Article  Google Scholar 

  • Kang, H. W., Lee, S. K., Kim, W. T., Kim, Y. J., Yun, S. J., Lee, S. C., et al. (2013). Natural history of asymptomatic renal stones and prediction of stone related events. Journal of Urology, 189(5), 1740–1746.

    Article  Google Scholar 

  • Kuta, J., Machát, J., Benová, D., Červenka, R., & Kořistková, T. (2012). Urinary calculi—atypical source of information on mercury in human biomonitoring. Central European Journal of Chemistry, 10(5), 1475–1483.

    Article  CAS  Google Scholar 

  • Kuta, J., Machát, J., Benová, D., Červenka, R., Zeman, J., & Martinec, P. (2013). Association of minor and trace elements with mineralogical constituents of urinary stones: A hard nut to crack in existing studies of urolithiasis. Environmental Geochemistry and Health, 35(4), 511–522.

    Article  CAS  Google Scholar 

  • Moroz, T. N., Palchik, N. A., & Dar’in, A. V. (2009). Microelemental and mineral compositions of pathogenic biomineral concrements: SRXFA, X-ray powder diffraction and vibrational spectroscopy data. Nuclear Instruments and Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 603(1–2), 141–143.

    Article  CAS  Google Scholar 

  • Perk, H., Serel, T. A., Kosar, A., Deniz, N., & Sayin, A. (2002). Analysis of the trace element contents of inner nucleus and outer crust parts of urinary calculi. Urologia Internationalis, 68(4), 286–290.

    Article  CAS  Google Scholar 

  • Pichette, V., Bonnardeaux, A., Cardinal, J., Houde, M., Nolin, L., Boucher, A., et al. (1997). Ammonium acid urate crystal formation in adult North American stone-formers. American Journal of Kidney Diseases, 30(2), 237–242.

    Article  CAS  Google Scholar 

  • Pineda-Vargas, C. A., Rodgers, A. L., & Eisa, M. E. (2004). Nuclear microscopy of human kidney stones, comparison between two population groups. Radiation Physics and Chemistry, 71(3–4), 947–950.

    Article  CAS  Google Scholar 

  • Pineda-Vargas, C. A., Eisa, M. E. M., & Rodgers, A. L. (2009). Characterization of human kidney stones using micro-PIXE and RBS: A comparative study between two different populations. Applied Radiation and Isotopes, 67(3), 464–469.

    Article  CAS  Google Scholar 

  • Puklová, V., Batáriová, A., Černá, M., Kotlík, B., Kratzer, K., Melicherčík, J., et al. (2005). Cadmium exposure pathways in the Czech urban population. Central European Journal of Public Health, 13(1), 11–19.

    Google Scholar 

  • Rambousková, J., Krsková, A., Slaviková, M., Čejchanová, M., Wranová, K., Procházka, B., et al. (2013). Trace elements in the blood of institutionalized elderly in the Czech Republic. Archives of Gerontology and Geriatrics, 56(2), 389–394.

    Article  CAS  Google Scholar 

  • Rambousková, J., Krsková, A., Slavíková, M., Čejchanová, M., & Černá, M. (2014). Blood levels of lead, cadmium, and mercury in the elderly living in institutionalized care in the Czech Republic. Experimental Gerontology, 58, 8–13.

    Article  CAS  Google Scholar 

  • Scales, C. D., Smith, A. C., Hanley, J. M., Saigal, C. S., & Urologic Dis Amer, P. (2012). Prevalence of kidney stones in the United States. European Urology, 62(1), 160–165.

    Article  Google Scholar 

  • Slojewski, M. (2011). Major and trace elements in lithogenesis. Central European Journal of Urology, 64(2), 58–61.

    Article  Google Scholar 

  • Slojewski, M., Czerny, B., Safranow, K., Drozdzik, M., Pawlik, A., Jakubowska, K., et al. (2009). Does smoking have any effect on urinary stone composition and the distribution of trace elements in urine and stones? Urological Research, 37(6), 317–322.

    Article  CAS  Google Scholar 

  • Slojewski, M., Czerny, B., Safranow, K., Jakubowska, K., Olszewska, M., Pawlik, A., et al. (2010). Microelements in stones, urine, and hair of stone formers: A new key to the puzzle of lithogenesis? Biological Trace Element Research, 137(3), 301–316.

    Article  CAS  Google Scholar 

  • Spěváčková, V., Krsková, A., Čejchanová, M., Wranová, K., Šmíd, J., & Černá, M. (2011). Biological monitoring in the Czech Republic—trace elements and occupationally unexposed population. Klinicka Biochemie a Metabolismus, 19(2), 101–107.

    Google Scholar 

  • Wandt, M. A. E., & Underhill, L. G. (1988). Covariance biplot analysis of trace-element concentrations in urinary stones. British Journal of Urology, 61(6), 474–481.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Education of the Czech Republic (LM2011028 and LO1214) and co-funded by the European Social Fund and the state budget of the Czech Republic. We also want to thank Ondřej Sáňka (RECETOX, Masaryk University) for creating the map for our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kuta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuta, J., Smetanová, S., Benová, D. et al. Urinary stones as a novel matrix for human biomonitoring of toxic and essential elements. Environ Geochem Health 38, 133–143 (2016). https://doi.org/10.1007/s10653-015-9691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9691-2

Keywords

Navigation