Skip to main content
Log in

Mineralogy, geochemistry, 13C and 16O isotopic characteristics of urinary stones in Iran, a case study of Lorestan Province

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Owing to the importance of urinary stones as one of the biominerals in the human body, it is necessary to investigate their chemical composition and mineralogy. In this matter, a mineralogical study using X-ray diffraction and scanning electron microscopy indicated that urinary stones in Lorestan Province were divided into 5 groups of calcium oxalate, urate, cysteine, phosphate and mixed stones (Whewellite, uric acid, phosphate). In this regard, the microscopic studies revealed that Whewellite was the most important mineral phase among various phases. In the following, the major and rare elements of each group were determined by inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence analysis. The obtained results demonstrated that Ca was found the most abundant element in urinary stones. In the analysis results of the major oxides, compared to other major oxides, CaO had the highest frequency in urinary stones. The reason was due to the role of calcium in most of the basic functions in cell metabolism. The average values of isotope 13C and 16O in the studied urinary stones were obtained − 33.71 and − 20.57, respectively. Overall, the values of 13C isotope in urinary stones were lower than those in the similar stones and human hard tissues in other countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abboud, I. A. (2008). Mineralogy and chemistry of urinary stones: patients from North Jordan. Environmental Geochemistry Health, 30(5), 445–463. https://doi.org/10.1007/s10653-007-9128-7

    Article  CAS  Google Scholar 

  • Abboud, I. A. (2008). Analyzing correlation coefficients of the concentrations of trace elements in urinary stones. Jordan Journal of Earth Environmental Science, 1(2), 73–80.

    Google Scholar 

  • Abboud, I. A. (2008). Concentration effect of trace metals in Jordanian patients of urinary calculi. Environmental Geochemistry and Health, 30(1), 11–20. https://doi.org/10.1007/s10653-007-9103-3

    Article  CAS  Google Scholar 

  • Afaj, A. H., & Sultan, M. A. (2005). Mineralogical composition of the urinary stones from different provinces in Iraq. Scientific World Journal, 5, 24–38. https://doi.org/10.1100/tsw.2005.2

    Article  CAS  Google Scholar 

  • Akoudad, S., Szklo, M., McAdams, M. A., Fulop, T., Anderson, C. A. M., Coresh, J., & Kottgen, A. (2010). Correlates of kidney stone disease differ by race in a multi-ethnic middle-aged population: The ARIC study. Preventive Medicine, 51(5), 416–420. https://doi.org/10.1016/j.ypmed.2010.08.011

    Article  Google Scholar 

  • Al-Eisa, A. A., Al-Hunayyan, A., & Gupta, R. (2002). Pediatric urolithiasis in Kuwait. International Urology and Nephrology, 33(1), 3–6. https://doi.org/10.1023/a:1014419830292

    Article  CAS  Google Scholar 

  • Ancharov, A. I., Nizovskii, A. I., Gridnev, S. A., Feofilov, I. V., & Vichkanov, A. N. (2005). An attempt of in vivo X-ray diffraction analysis of kidney stones with the use of synchrotron radiation". Nuclear Instruments Methods Physics Research, 543(1), 302–305. https://doi.org/10.1016/j.nima.2005.01.245

    Article  CAS  Google Scholar 

  • Atakan, I. H., Kaplan, M., Seren, G., Aktoz, T., Gül, H., & Inci, O. (2007). Serum, urinary and stone zinc, iron, magnesium and copper levels in idiopathic calcium oxalate stone patients. International Urology and Nephrology, 39(2), 351–356. https://doi.org/10.1007/s11255-006-9050-4

    Article  CAS  Google Scholar 

  • Atan, L., Andreoni, C., Ortiz, V., Silva, E. K., Pitta, R., Atan, F., & Srougi, M. (2005). High kidney stone risk in men working in steel industry at hot temperatures. Urology, 65(5), 858–861. https://doi.org/10.1016/j.urology.2004.11.048

    Article  Google Scholar 

  • Athanasiadou, D., Godelitsas, A., Sokaras, D., Karydas, A. G., Dotsika, E., & Xanthos, S. (2017). New Insights into the chemical and isotopic composition of human body biominerals II: COM kidney stones from Greece. International Archives Urology and Complication, 3, 1–20. https://doi.org/10.23937/2469-5742/1510020

    Article  Google Scholar 

  • Ayliffe, L. K., Cerling, T. E., Robinson, T., West, A. G., Sponheimer, M., & Passey, B. H. (2004). Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia, 139(1), 11–22. https://doi.org/10.1007/s00442-003-1479-x

    Article  CAS  Google Scholar 

  • Basiri, A., Shakhssalim, N., Ghahestani, S. M., & Basiri, H. (2010). The demographic profile of urolithiasis in Iran: a nationwide epidemiologic study. International Urology and Nephrology, 42(1), 119–126. https://doi.org/10.1007/s11255-009-9588-z

    Article  Google Scholar 

  • Basiri, A., Shakhssalim, N., Khoshdel, A. R., Ghahestani, S. M., & Basiri, H. (2010). The demographic profile of urolithiasis in Iran: a nationwide epidemiologic study. International Urology Nephrology, 42(1), 119–126. https://doi.org/10.1007/s11255-009-9588-z

    Article  Google Scholar 

  • Bazin, D., Chevallier, P., Matzen, G., Jungers, P., & Daudon, M. (2007). Heavy elements in urinary stones. Urological Research., 35(4), 179–184. https://doi.org/10.1007/s00240-0070099-z

    Article  CAS  Google Scholar 

  • Becker, G. (2007). Uric acid stones. Nephrology, 12, S21–S25.

    Article  CAS  Google Scholar 

  • Bellizzi, V., Nicola De, L., Minutolo, R., Russo, D., Cianciaruso, B., & Andreucci, M. (1998). Effects of water hardness on urinary risk factors for kidney stones in patients with idiopathic nephrolithiasis. Nephron, 81, 66–70. https://doi.org/10.1159/000046301

    Article  Google Scholar 

  • Cerling, T. E., Wittemyer, G., Rasmussen, H. B., Vollrath, F., Cerling, C. E., & Robinson, T. J. (2006). Stable isotopes in elephant hair document migration patterns and diet changes. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 371–373. https://doi.org/10.1073/pnas.0509606102

    Article  CAS  Google Scholar 

  • Chandrajith, R., Wijewardana, G., Dissanayake, C. B., & Abeygunasekara, A. (2006). Biomineralogy of human urinary calculi (kidney stones) from some geographic regions of Sri Lanka. Environmental Geochemistry and Health, 28(4), 393–399. https://doi.org/10.1007/s10653-006-9048-y

    Article  CAS  Google Scholar 

  • Chandrajith, R., Weerasingha, A., Premaratne, K. M., Gamage, D., Abeygunasekera, A. M., Joachimski, M. M., & Senaratne, A. (2019). Mineralogical, compositional and isotope characterization of human kidney stones (urolithiasis) in a Sri Lankan population. Environmental Geochemistry and Health, 41(5), 1881–1894. https://doi.org/10.1007/s10653-018-0237-2

    Article  CAS  Google Scholar 

  • Daudon, M., Bader, C. A., & Jungers, P. (1993). Urinary calculi: Review of classification methods and correlations with etiology. Scanning Microscopy, 7(3), 1081–1106.

    CAS  Google Scholar 

  • Daudon, M., Bouzidi, H., & Bazin, D. (2010). Composition and morphology of phosphate stones and their relation with etiology. Urological Research, 38(6), 459–468. https://doi.org/10.1007/s00240-010-0320-3

    Article  CAS  Google Scholar 

  • Deeming, S., & Weber, C. (1977). Evaluation of hair analysis for determination of zinc status using rats. American Journal of Clinical Nutrition, 30(12), 2047–2052. https://doi.org/10.1093/ajcn/30.12.2047

    Article  CAS  Google Scholar 

  • Delfan, B., Kazemeini, H., & Bahmani, M. (2015). Identifying effective medicinal plants for cold in Lorestan province, West of Iran. Journal of Evidence-based Complementary Alternative Medicine, 20(3), 173–179. https://doi.org/10.1177/2F2156587214568458

    Article  Google Scholar 

  • Frackowiaka, A., Skibinski, P., Gawe, W., Zaczynska, E., Czarny, A., & Gancarz, R. (2010). Synthesis of glycoside derivatives of hydroxyanthraquinone with ability to dissolve and inhibit formation of crystals of calcium oxalate Potential compounds in kidney stone therapy. European Journal of Medicinal Chemistry., 45(3), 1001–1007. https://doi.org/10.1016/j.ejmech.2009.11.042

    Article  CAS  Google Scholar 

  • Gholami, M., Mirzaei, S., & Jomehzadeh, A. (2011). Gamma background radiation measurement in Lorestan province. Iran International Journal of Radiation Research, 9(2), 89–93.

    Google Scholar 

  • Giannossi, M. L., & Summa, V. (2013). An observation on the composition of urinary calculi: environmental influence. Medical Geochemistry (pp. 67–90). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-4372-4_5

    Chapter  Google Scholar 

  • Giannossi, M. L., Mongelli, G., Tateo, F., & Summa, V. (2012). Mineralogical and morphological investigation of kidney stones of a Mediterranean region (Basilicata, Italy). Journal X-Ray Science Technology, 20(2), 175–186. https://doi.org/10.3233/XST-2012-0327

    Article  CAS  Google Scholar 

  • Giannossi, M. L., Summa, V., & Mongelli, G. (2012). Trace element investigations in urinary stones: A preliminary pilot case in Basilicata (Southern Italy). Journal of Trace Elements in Medicine and Biology, 27(2), 91–97. https://doi.org/10.1016/j.jtemb.2012.09.004

    Article  CAS  Google Scholar 

  • Golovanova, O., Palchik, N., & Maksimova, N. A. (2006). Comparative characterization of the microelement composition of kidney stones from patients in the Novosibirsk and Omsk Regions. Chemical for sustainable development., 15(1), 55–61.

    Google Scholar 

  • Gupta, N. P., & Kesarwani, P. (2002). Current approaches in the medical management of urolithiasis: A review article. Indian Journal of Urology, 19(1), 20.

    Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110. https://doi.org/10.1023/A:1008119611481

    Article  Google Scholar 

  • Hesse, A. (2009). Urinary stones. In F. Lang (Ed.), Encyclopedia of molecular mechanisms of disease (pp. 2144–2147). Springer.

    Google Scholar 

  • Hesse, A., & Sanders, G. (1988). Atlas of infrared spectra for the analysis of urinary concrements. Georg Thieme.

    Google Scholar 

  • Hesse, A., Berg, W., Schneider, H. J., & Hienzsch, E. (1976). A contribution to the formation mechanism of calcium oxalate urinary calculi. Urological Research, 4(4), 157–160.

    Article  CAS  Google Scholar 

  • Hesse, A., Tiselius, H. G., & Jahnen, A. (2002).Urinary stones–diagnosis. Treatment, and prevention of recurrence (2nd ed, pp. 228). Basel: Karger.

  • Hoefs, J., & Armbruster, T. (1978). 13C/12C-Verha¨ltnisse in menschlichen Harnkonkrementen. Naturwissenschaften, 65(11), 586–589.

    Article  CAS  Google Scholar 

  • Holmes, P., James, K. A. F., & Levy, L. S. (2001). Is low-level environmental mercury exposure of concern to human health? Science of the Total Environment, 408, 171–182. https://doi.org/10.1016/j.scitotenv.2009.09.043

    Article  CAS  Google Scholar 

  • Joost, J., & Tessadri, R. (1986). Trace element investigations in kidney stone patients. European Urology, 13(4), 264–270.

    Article  Google Scholar 

  • Kerr, A., & Laing, M. (1992). Mineralogical Studies of human urinary cal cull from Natal. Environmental Geochemistry and Health, 14, 19–25. https://doi.org/10.1007/BF01783622

    Article  CAS  Google Scholar 

  • Keshavarzi, B., Yavarashayeri, N., Irani, D., Moore, F., Zarasvandi, A., & Salari, M. (2015). Trace elements in urinary stones: A preliminary investigation in Fars Province. Iran. Environmental Geochemistry and Health, 37(2), 377–389. https://doi.org/10.1007/s10653-014-9654-z

    Article  CAS  Google Scholar 

  • Keshavarzi, B., Yavar Ashayeri, N., Moore, F., Irani, D., Asadi, S., Zarasvandi, A., & Salari, M. (2016). Mineralogical composition of urinary stones and their frequency in patients: Relationship to gender and age. Minerals, 6(4), 131.

    Article  Google Scholar 

  • Knoll, T. (2010). Epidemiology, pathogenesis, and pathophysiology of urolithiasis. European Urology Supplements, 1, 802–806.

    Article  Google Scholar 

  • Kohri, K., Garside, J., & Blacklock, N. (1988). The role of magnesium in calcium oxalate urolithiasis. British Journal of Urology, 61(2), 107–115. https://doi.org/10.1111/j.1464-410x.1988.tb05057.x

    Article  CAS  Google Scholar 

  • Kohri, K., Kodama, M., Ishikawa, Y., Katayama, Y., Takada, M., Katoh, Y., Kataoka, K., Iguchi, M., & Kurita, T. (1989). Magnesium-to-calcium ratio in tap water, and its relationship to geological features and the incidence of calcium-containing urinary stones. Journal of Urology, 142(5), 1272–1275. https://doi.org/10.1016/s0022-5347(17)39054-7

    Article  CAS  Google Scholar 

  • Krouse, H. R., & Levinson, A. A. (1984). Geographical trends of carbon and sulphur isotope abundances in human kidney stones. Geochimica Cosmochimica Acta, 48(1), 187–191. https://doi.org/10.1016/0016-7037(84)90360-0

    Article  CAS  Google Scholar 

  • Krouse, H. R., Levinson, A. A., Piggott, D., & Ueda, A. (1987). Further stable isotope investigations of human urinary stones: Comparison with other body components. Applied Geochemistry, 2(2), 205–211.

    Article  CAS  Google Scholar 

  • Kuta, J., Machat, J., Benova, D., Cervenka, R., & Koristkova, T. (2012). Urinary calculia-typical source of information on mercury in human biomonitoring. Open Chemistry., 10(5), 1475–1483. https://doi.org/10.2478/s11532-012-0063-9

    Article  CAS  Google Scholar 

  • Levinson, A. A., Luz, B., & Kolodny, Y. (1987). Variations in oxygen isotopic compositions of human teeth and urinary stones. Applied Geochemistry, 2(4), 367–371. https://doi.org/10.1016/0883-2927(87)90021-7

    Article  CAS  Google Scholar 

  • Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica Et Cosmochimica Acta, 48(2), 385–390. https://doi.org/10.1016/0016-7037(84)90259-X

    Article  CAS  Google Scholar 

  • Lowenstam, H. A., & Margulis, L. (1980). Calcium regulation and the appearance of calcareous skeletons in the fossil record. In M. Omori (Ed.), The mechanisms of biomineralization in animals and plants (pp. 289–300). WatabeN(eds) Tokai University Press.

    Google Scholar 

  • Lowenstam, H. A., & Weiner, S. (1989). On Biomineralization. Oxford University Press.

    Book  Google Scholar 

  • McGrath, K. M. (2001). Probing material formation in the presence of organic and biological molecules. Advanced Material, 13(12), 989–992.

    Article  CAS  Google Scholar 

  • Meyer, J. L., & Angino, E. E. (1977). The role of trace metals in calcium urolithiasis. Investigative Urology, 14(5), 347–350.

  • Minagawa, M. (1992). Reconstruction of human diet from r13C and r15N in contemporary Japanese hair: A stochastic method for estimating multi-source contribution by double isotopic tracers. Applied Geochemistry, 7(2), 145–158.

    Article  CAS  Google Scholar 

  • Mohamed Farook, N. A., Mozhiyras, P., & Nalini, R. (2006). Inhibition of mineralization of urinary stone forming minerals by medicinal plants. European Journal of Chemistry, 12, 182–185. https://doi.org/10.1007/BF02867665

    Article  Google Scholar 

  • Munoz, J. A., & Valiente, M. (2005). Effects of trace metals on the inhibition of calcium oxalate crystallization. Urological Research, 33(4), 267–272. https://doi.org/10.1007/s00240-005-0468-4

    Article  CAS  Google Scholar 

  • Muñoz, J. A., López-Mesas, M., & Valiente, M. (2010). Development and validation of a simple determination of urine metabolites (oxalate, citrate, uric acid and creatinine) by capillary zone electrophoresis. Talanta, 81(1–2), 392–397.

    Article  Google Scholar 

  • Nardoto, G. B., Silva, S., Kendall, C., Ehleringer, J. R., Chesson, L. A., & Ferraz, E. S. B. (2006). Geographical patterns of human diet derived from stable isotope analysis of fingernails. American Journal of Physical Anthropology, 131(1), 137–146. https://doi.org/10.1002/ajpa.20409

    Article  Google Scholar 

  • Paolo, C., Thomas, D., & Yigal, E. (2013). Medical Geochemistry. Geological Materials and Health, 1, 7–12. https://doi.org/10.1007/978-94-007-4372-4

    Article  Google Scholar 

  • Perk, H., Ahmet Serel, T., Kosar, A., Deniz, N., & Sayin, A. (2002). Analysis of the trace element contents of inner nucleus and outer crust parts of urinary calculi. Urologia Internationalis, 68(4), 286–290. https://doi.org/10.1159/000058452

    Article  CAS  Google Scholar 

  • Qaader, D. S., Yousif, S. Y., & Mahdi, L. K. (2006). Prevalence and etiology of urinary stones in hospitalized patients in Baghdad. Eastern Mediterranean Health Journal, 12, 853–861.

    CAS  Google Scholar 

  • Robertson, W. G., & Peacock, M. (1980). The cause of idiopathic calcium stone disease: Hypercalciuria or hyperoxaluria?. Nephron, 26(3), 105–110.

    Article  CAS  Google Scholar 

  • Romero, V., Akpinar, H., & Assimos, D. G. (2010). Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Reviews in Urology, 12(2–3), e86.

    Google Scholar 

  • Safarinejad, M. R. (2007). Adult urolithiasis in a population-based study in Iran: prevalence, incidence, and associated risk factors. Urological Research, 35(2), 73–82. https://doi.org/10.1007/s00240-007-0084-6

    Article  Google Scholar 

  • Schwartz, B. F., Schenkman, N. S., Bruce, J. E., Leslie, S. W., & Stoller, M. L. (2002). Calcium nephrolithiasis: effect of water hardness on urinary electrolytes. Urology, 60, 23–30. https://doi.org/10.1016/s0090-4295(02)01631-x

    Article  Google Scholar 

  • Sekkoum, K., Cheriti, A., Taleb, S., & Belboukhari, N. (2011). FTIR spectroscopic study of human urinary stones from El Bayadh district (Algeria). Arabian Journal of Chemistry, 9(3), 330–334. https://doi.org/10.1016/j.arabjc.2011.10.010

    Article  CAS  Google Scholar 

  • Siener, R., Jahnen, A., & Hesse, A. (2004). Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. European Journal of Clinical Nutrition., 58(270), 276. https://doi.org/10.1038/sj.ejcn.1601778

    Article  CAS  Google Scholar 

  • Simkiss, K., & Wilbur, K. M. (1989). Biomineralization: cell biology and mineral deposition (p. 92101). CA: San Diego.

    Google Scholar 

  • Singh, V. K., Rai, A. K., Rai, P. K., & Jindal, P. K. (2009). Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy. Laser Medicine Science, 24(749), 759. https://doi.org/10.1007/s10103-008-0635-2

    Article  Google Scholar 

  • Sobhi, N. (2006). The mineralogy and chemistry of urinary stones from the Arabian Gulf. Internet Site, 7, 11–17.

    Google Scholar 

  • Sood, A., Qualls, C., & Schuyler, M. (2010). Leptin, adiponectin, and asthma: findings from a population-based cohort study. Annals of Allergy, Asthma & Immunology, 104(4), 355.

    Article  Google Scholar 

  • Talwar, I. M., Yagyik, Y., & Lal, N. (1991). Thermally stimulated polarization studies of kidney stones. Biomaterials, 12, 518–520. https://doi.org/10.1016/0142-9612(91)90152-z

    Article  CAS  Google Scholar 

  • Touryan, L. A., Lochhead, M. J., Marquardt, B. J., & Vogel, V. (2004). Sequential switch of biomineral crystal morphology using trivalent ions. Nature Materials, 3(4), 239–243. https://doi.org/10.1038/nmat1096

    Article  CAS  Google Scholar 

  • Wijayarathna, K. S. N., & Abeygunasekera, A. M. (2013). Pathogenesis of nephrolithiasis. The Journal of Urology, 31(3), 28–32. https://doi.org/10.1016/j.juro.2012.11.069

    Article  Google Scholar 

  • Zarasvandi, A., Heidari, M., Sadeghi, M., & Mousapoor, E. (2013). Major and trace element composition of urinary stones, Khuzestan province, Southwest Iran. Journal of Geochemical Exploration, 131, 52–58. https://doi.org/10.1016/j.gexplo.2012.08.014

    Article  CAS  Google Scholar 

  • Zarasvandi, A., Carranza, E. J. M., Heidari, M., & Mousapour, E. (2014). Environmental factors of urinary stones mineralogy, Khouzestan Province Iran. Journal of African Earth Sciences, 97, 368–376. https://doi.org/10.1016/j.jafrearsci.2014.04.031

    Article  CAS  Google Scholar 

Download references

Funding

No financial support has received to conduct the current study.

Author information

Authors and Affiliations

Authors

Contributions

Seadat Aghajari contributed to data acquisition, data curation and formal analysis, Ahad Nazarpour was involved in conceptualization, writing—original draft, and validation, and Sima Sabzalipour and Rozbahani contributed to data curation, formal analysis and validation.

Corresponding author

Correspondence to Ahad Nazarpour.

Ethics declarations

Conflicts of interest

There is no conflict of interest regarding this research and its dissemination.

Animal research

Animal was not used in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajari, S., Sabzalipour, S., Nazarpour, A. et al. Mineralogy, geochemistry, 13C and 16O isotopic characteristics of urinary stones in Iran, a case study of Lorestan Province. Environ Geochem Health 43, 5157–5176 (2021). https://doi.org/10.1007/s10653-021-00986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00986-z

Keywords

Navigation