Skip to main content
Log in

Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mixed contamination by organic and inorganic compounds in soil is a serious problem for remediation. Most laboratory studies and field-scale trials focused on individual contaminant in the past. For concurrent bioremediation by biodegradation and bioleaching processes, we tested metal-reducing microorganism, Geobacter metallireducens. In order to prove the feasibility of the coupled process, multiple-contaminated soil was prepared. Mineralogical analyses have shown the existence of labile forms of As(V) as amorphous and/or weakly sorbed phases in the secondary Fe oxides. In the biotic experiment using G. metallireducens, biodegradation of toluene and bioleaching of As by bacteria were observed simultaneously. Bacteria accelerated the degradation rate of toluene with reductive dissolution of Fe and co-dissolution of As. Although there have been many studies showing each individual process, we have shown here that the idea of concurrent microbial reaction is feasible. However, for the practical use as a remediation technology, more details and multilateral evaluations are required in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeniyi, A. A., & Owoade, O. J. (2010). Total petroleum hydrocarbons and trace heavy metals in roadside soils along the Lagos-Badagry expressway, Nigeria. Environmental Monitoring and Assessment, 167, 625–630.

    Article  CAS  Google Scholar 

  • Ahmann, D., Roberts, A. L., Krumholz, L. R., & Morel, F. M. M. (1994). Microbe grows by reducing arsenic. Nature, 351, 750.

    Article  Google Scholar 

  • Bosecker, K. (1997). Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20, 591–604.

    Article  CAS  Google Scholar 

  • Boyajian, G. E., & Carreira, L. H. (1997). Phytoremediation: A clean transition from laboratory to marketplace? Nature Biotechnology, 15, 127–128.

    Article  CAS  Google Scholar 

  • Chakraborty, R., & Coates, J. D. (2004). Anaerobic degradation of monoaromatic hydrocarbons. Applied Microbiology and Biotechnology, 64, 437–446.

    Article  CAS  Google Scholar 

  • Chatain, V., Bayard, R., Sanchez, F., Moxzkowicz, P., & Gourdon, R. (2005). Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions. Environment International, 31, 221–226.

    Article  CAS  Google Scholar 

  • Coates, J. D., Bhupathiraju, V. K., Achenbach, L. A., McInerny, M. J., & Lovley, D. R. (2001). Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new strictly anaerobic, dissimilatory Fe(III)-reducers. International Journal of Systematic and Evolutionary Microbiology, 51, 581–588.

    CAS  Google Scholar 

  • Cummings, D. E., Caccavo, F., Fendorf, S., & Rosenzweig, R. F. (1999). Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environmental Science and Technology, 33, 723–729.

    Article  CAS  Google Scholar 

  • Heider, J., Spormann, A. M., Beller, H. R., & Widdel, F. (1998). Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiology Reviews, 22, 459–473.

    Article  CAS  Google Scholar 

  • Iturbe, R., Flores, R. M., Flores, C., & Torres, L. G. (2006). Cleanup levels at an oil distribution and storage station in eastern central Mexico determined from a health risk assessment. International Journal of Environment and Pollution, 26, 106–128.

    Article  CAS  Google Scholar 

  • Jahn, M. K., Haderlein, S. B., & Meckenstock, R. U. (2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Applied and Environmental Microbiology, 71, 3355–3358.

    Article  CAS  Google Scholar 

  • Joynt, J., Bischoff, M., Turco, R., Konopka, A., & Nakatsu, C. H. (2006). Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microbial Ecology, 51, 209–219.

    Article  CAS  Google Scholar 

  • Kuhn, E. P., Colberg, P. J., Schnoor, J. L., Wanner, O., Zehnder, A. J. B., & Schwarzenbach, R. P. (1985). Microbial transformation of substituted benzenes during infiltration of river water to groundwater: Laboratory column studies. Environmental Science and Technology, 19, 961–968.

    Article  CAS  Google Scholar 

  • Kunapuli, U., Griebler, C., Beller, H. R., & Meckenstock, R. U. (2008). Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environmental Microbiology, 10, 1703–1712.

    Article  CAS  Google Scholar 

  • Kunapuli, U., Jahn, M. K., Lueders, T., Geyer, R., Heipieper, H. J., & Meckenstock, R. U. (2010). Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 60, 686–695.

    Article  CAS  Google Scholar 

  • Laban, N. A., Selesi, D., Jobelius, C., & Meckenstock, R. U. (2009). Anaerobic benzene degradation by gram-positive sulfate-reducing bacteria. FEMS Microbiology Ecology, 68, 300–311.

    Article  CAS  Google Scholar 

  • Lee, K. Y., & Kim, K. W. (2010). Heavy metal removal from shooting range soil by hybrid electrokinetics with bacteria and enhancing agents. Environmental Science and Technology, 44, 9482–9487.

    Article  CAS  Google Scholar 

  • Lee, K. Y., Kim, K. W., & Kim, S. O. (2010). Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Environmental Geochemistry and Health, 32, 31–44.

    Article  CAS  Google Scholar 

  • Lee, K. Y., Yoon, I. H., Lee, B. T., Kim, S. O., & Kim, K. W. (2009). A novel combination of anaerobic bioleaching and electrokinetics for arsenic removal from mine tailing soil. Environmental Science and Technology, 43, 9354–9360.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1993). Dissimilatory metal reduction. Annual Review of Microbiology, 47, 263–290.

    Article  CAS  Google Scholar 

  • Lovley, D. R., & Lonergan, D. J. (1990). Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Applied and Environmental Microbiology, 56, 1858–1864.

    CAS  Google Scholar 

  • Manfredi, S., Tonini, D., & Christensen, T. H. (2010). Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste. Waste Management, 30, 433–440.

    Article  CAS  Google Scholar 

  • Mielke, H. W., Wang, G., Gonzales, C. R., Le, B., Quach, V. N., & Mielke, P. W. (2001). PAH and metal mixtures in New Orleans soils and sediments. The Science of the Total Environment, 281, 217–227.

    Article  CAS  Google Scholar 

  • Nealson, K. H., & Saffarini, D. (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annual Review of Microbiology, 48, 31–343.

    Article  Google Scholar 

  • Newman, D. K., Ahmann, D., & Morel, F. M. M. (1998). A brief review of microbial arsenate respiration. Geomicrobiology Journal, 15, 255–268.

    Article  CAS  Google Scholar 

  • Newville, M. (2001). IFEFFIT: Interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 8, 322–324.

    Article  CAS  Google Scholar 

  • Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63, 249–257.

    Article  CAS  Google Scholar 

  • Osuji, L. C., & Onojake, C. M. (2006). Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria. Journal of Environmental Management, 79, 133–139.

    Article  CAS  Google Scholar 

  • Ravel, B., & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.

    Article  CAS  Google Scholar 

  • Robles-González, I. V., Fava, F., & Poggi-Varaldo, H. M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories. doi:10.1186/1475-2859-7-5.

  • Rohwerder, T., Gehrke, T., Kinzler, K., & Sand, W. (2003). Bioleaching review part A: Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology, 63, 239–248.

    Article  CAS  Google Scholar 

  • Safinowski, M., Griebler, C., & Meckenstock, R. U. (2006). Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: Evidence from laboratory and field studies. Environmental Science and Technology, 40, 4165–4173.

    Article  CAS  Google Scholar 

  • Seidel, H., Löser, C., Zehnsdorf, A., Hoffmann, P., & Schmerold, R. (2004). A bioremediation process for sediments contaminated by heavy metals: Feasibility study on a pilot scale. Environmental Science and Technology, 38, 1582–1588.

    Article  CAS  Google Scholar 

  • Selesi, D., & Meckenstock, R. U. (2009). Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiology Ecology, 68, 86–93.

    Article  CAS  Google Scholar 

  • Shi, W., Bischoff, M., Turco, R., & Konopka, A. (2005). Microbial catabolic diversity in soils contaminated with hydrocarbons and heavy metals. Environmental Science and Technology, 39, 1974–1979.

    Article  CAS  Google Scholar 

  • Spormann, A. M., & Widdel, F. (2000). Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation, 11, 85–105.

    Article  CAS  Google Scholar 

  • Stookey, L. L. (1970). Ferrozine-A new spectrophotometric reagent for iron. Analytical Chemistry, 42, 779–781.

    Article  CAS  Google Scholar 

  • Tang, X., Shen, C., Shi, D., Cheema, S. A., Khan, M. I., Zhang, C., et al. (2010). Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China. Journal of Hazardous Materials, 173, 653–660.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Ure, A. M. (1995). Method of analysis for heavy metals in soils. In B. J. Alloway (Ed.), Heavy metal in soils (2nd ed., pp. 55–68). Glasgow: Chapman & Hall.

    Google Scholar 

  • USEPA. (2000). Innovative remediation technologies: Field-scale demonstration projects in North America (2nd ed.). EPA 542-B-00-004.

  • Weelink, S. A. B., van Eekert, M. H. A., & Stams, A. J. M. (2010). Degradation of BTEX by anaerobic bacteria: Physiology and application. Reviews in Environmental Science and Biotechnology, 9, 359–385.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. D. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 309–323.

    Article  CAS  Google Scholar 

  • White, C., Sharman, A. K., & Gadd, G. M. (1998). An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnology, 16, 572–575.

    Article  CAS  Google Scholar 

  • Widdel, F., Kohring, G. W., & Mayer, F. (1983). Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola ge. nov. sp. nov., and Desulfonema magnum sp. nov. Archives of Microbiology, 134, 286–294.

    Article  CAS  Google Scholar 

  • Widdel, F., & Rabus, R. (2001). Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology, 12, 259–276.

    Article  CAS  Google Scholar 

  • Wilkomirski, B., Sudnik-Wójcikowska, B., Galera, H., Wierzbicka, M., & Malawska, M. (2010). Railway transportation as a serious source of organic and inorganic pollution. Water Air and Soil Pollution. doi:10.1007/s11270-010-0645-0.

  • Yin, K., Viana, P., Zhao, X., & Rockne, K. (2010). Characterization, performance modeling, and design of an active capping remediation project in a heavily polluted urban channel. The Science of the Total Environment, 408, 3454–3463.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant and the nuclear R&D Project funded by the Korea Government (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer U. Meckenstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KY., Bosch, J. & Meckenstock, R.U. Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environ Geochem Health 34 (Suppl 1), 135–142 (2012). https://doi.org/10.1007/s10653-011-9406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-011-9406-2

Keywords

Navigation