Skip to main content
Log in

The role of coherent turbulent structures in explaining scalar dissimilarity within the canopy sublayer

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Scalar similarity is widely assumed in models and interpretation of micro-meteorological measurements. However, in the air space within and just above the canopy (the so-called canopy sublayer, CSL) scalar similarity is generally violated. The scalar dissimilarity has been mainly attributed to differences in the distribution of sources and sinks throughout the canopy. Since large-scale coherent structures in the CSL (e.g. double roller and sweep/ejection) arise from the instabilities generated by the interaction between the mean flow and the canopy, they may encode key dynamical features about the production term responsible for the source–sink dissimilarity of scalars. Therefore, it is reasonable to assume that the geometric attributes of coherent structures are tightly coupled to the onset and the vertical extent of scalar dissimilarity within the CSL. Large-eddy simulation (LES) runs were used to investigate the role of coherent structures in explaining scalar dissimilarity among three scalars (potential air temperature, water vapour and \(\text{ CO }_2\) concentration) within the CSL under near-neutral conditions for horizontally uniform but vertically varying vegetation leaf area density. It was shown that coherent structures, when identified from the first mode of a novel proper orthogonal decomposition (POD) approach, were able to capture some features of the scalar dissimilarity in the original LES field. This skill was quantified by calculating scalar–scalar correlation coefficients and turbulent Schmidt numbers of the original field and the coherent structures, respectively. However, coherent structures tend to magnify the magnitude of scalar–scalar correlation, particularly in cases where this correlation is already strong. The ability of coherent structures to describe more complex features such as the scalar sweep-ejection cycle was also explored. It was shown that the first mode of the POD does not capture the relative importance of sweeps to ejections in the original LES field. However, the superposition of few secondary coherent structures, derived from higher order POD modes, largely diminish the discrepancies between the original field and the POD expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Albertson JD, Parlange MB (1999a) Natural integration of scalar fluxes from complex terrain. Adv Water Resour 23(3):239–252. doi:10.1016/S0309-1708(99)00011-1

    Article  Google Scholar 

  2. Albertson JD, Parlange MB (1999b) Surface length scales and shear stress: implications for land–atmosphere interaction over complex terrain. Water Resour Res 35(7):2121–2132. doi:10.1029/1999WR900094

    Article  Google Scholar 

  3. Albertson JD, Parlange M, Katul G, Chu CR, Stricker H (1995) Sensible heat-flux from arid regions—a simple flux-variance method. Water Resour Res 31(4):969–973. doi:10.1029/94WR02978

    Article  Google Scholar 

  4. Albertson JD, Katul GG, Wiberg P (2001) Relative importance of local and regional controls on coupled water, carbon, and energy fluxes. Adv Water Resour 24(9–10):1103–1118. doi:10.1016/S0309-1708(01)00042-2

    Article  Google Scholar 

  5. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575. doi:10.1146/annurev.fluid.25.1.539

    Article  Google Scholar 

  6. Brunet Y, Finnigan JJ, Raupach MR (1994) A wind-tunnel study of air-flow in waving wheat—single-point velocity statistics. Boundary-Layer Meteorol 70(1–2):95–132. doi:10.1007/BF00712525

    Article  Google Scholar 

  7. Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer, New York

    Book  Google Scholar 

  8. Cassiani M, Katul GG, Albertson JD (2008) The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results. Boundary-Layer Meteorol 126(3):433–460. doi:10.1007/s10546-007-9242-1

    Article  Google Scholar 

  9. Cava D, Katul GG, Scrimieri A, Poggi D, Cescatti A, Giostra U (2006) Buoyancy and the sensible heat flux budget within dense canopies. Boundary-Layer Meteorol 118(1):217–240. doi:10.1007/s10546-005-4736-1

    Article  Google Scholar 

  10. Cava D, Katul GG, Sempreviva AM, Giostra U, Scrimieri A (2008) On the anomalous behaviour of scalar flux-variance similarity functions within the canopy sub-layer of a dense alpine forest. Boundary-Layer Meteorol 128(1):33–57. doi:10.1007/s10546-008-9276-z

    Article  Google Scholar 

  11. Cescatti A, Marcolla B (2004) Drag coefficient and turbulence intensity in conifer canopies. Agric For Meteorol 121(3–4):197–206. doi:10.1016/j.agrformet.2003.08.028

    Article  Google Scholar 

  12. De Bruin HAR, Van Den Hurk BJJM, Kroon LJM (1999) On the temperature–humidity correlation and similarity. Boundary-Layer Meteorol 93(3):453–468. doi:10.1023/A:1002071607796

    Article  Google Scholar 

  13. Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93–128. doi:10.1017/S0022112009006739

    Article  Google Scholar 

  14. Dupont S, Patton EG (2012) Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the chats experiment. Atmos Chem Phys Discuss 12:6363–6418. doi:10.5194/acpd-12-6363-2012

    Article  Google Scholar 

  15. Dupont S, Gosselin F, Py C, de langre E, Hemon P, Brunet Y (2010) Modelling waving crops using large-eddy simulation: comparison with experiments and a linear stability analysis. J Fluid Mech 652:5–44. doi:10.1017/S0022112010000686

    Article  Google Scholar 

  16. Dupont S, Irvine MR, Bonnefond JM, Lamaud E, Brunet Y (2012) Turbulent structures in a pine forest with a deep and sparse trunk space: Stand and edge regions. Boundary-Layer Meteorol 143(2):309–336. doi:10.1007/s10546-012-9695-8

    Article  Google Scholar 

  17. Ellsworth DS, Oren R, Huang C, Phillips N, Hendrey GR (1995) Leaf and canopy responses to elevated \(\text{ CO }_2\) in a pine forest under free-air \(\text{ CO }_2\) enrichment. Oecologia 104(2):139–146. doi: 10.1007/BF00328578

    Article  Google Scholar 

  18. Farquhar G, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic \(\text{ CO }_2\) assimilation in leaves of \(\text{ C }_3\) species. Planta 149:78–90

    Article  Google Scholar 

  19. Finnigan JJ, Shaw RH (2000) A wind-tunnel study of airflow in waving wheat: an EOF analysis of the structure of the large-eddy motion. Boundary-Layer Meteorol 96(1–2):211–255. doi:10.1023/A:1002618621171

  20. Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:387–424. doi:10.1017/S0022112009990589

    Article  Google Scholar 

  21. Flesch TK, Prueger JH, Hatfield JL (2002) Turbulent Schmidt number from a tracer experiment. Agric For Meteorol 111(4):299–307. doi:10.1016/S0168-1923(02)00025-4

    Article  Google Scholar 

  22. Gao W, Shaw RH, Paw KT (1989) Observation of organized structure in turbulent-flow within and above a forest canopy. Boundary-Layer Meteorol 47(1–4):349–377. doi:10.1007/BF00122339

    Article  Google Scholar 

  23. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  24. Guo X, Zhang H, Cai X, Kang L, Zhu T, Leclerc MY (2009) Flux-variance method for latent heat and carbon dioxide fluxes in unstable conditions. Boundary-Layer Meteorol 131(3):363–384. doi:10.1007/s10546-009-9377-3

    Article  Google Scholar 

  25. Harman IN, Finnigan JJ (2008) Scalar concentration profiles in the canopy and roughness sublayer. Boundary-Layer Meteorol 129(3):323–351. doi:10.1007/s10546-008-9328-4

    Article  Google Scholar 

  26. Herzog S (1986) The large scale structure in the near-wall region of turbulent pipe flow. PhD thesis, Cornell University

  27. Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent structures, dynamical systems, and symmetry. Cambridge University Press, New York

    Book  Google Scholar 

  28. Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface-layer. Boundary-Layer Meteorol 59(3):279–296. doi:10.1007/BF00119817

    Article  Google Scholar 

  29. Hsieh CI, Katul G (2009) The lagrangian stochastic model for estimating footprint and water vapor fluxes over inhomogeneous surfaces. Int J Biometeorol 53(1):87–100. doi:10.1007/s00484-008-0193-0

    Article  Google Scholar 

  30. Hsieh CI, Katul GG, Schieldge J, Sigmon J, Knoerr KR (1996) Estimation of momentum and heat fluxes using dissipation and flux-variance methods in the unstable surface layer. Water Resour Res 32(8):2453–2462. doi:10.1029/96WR01337

    Article  Google Scholar 

  31. Hsieh CI, Lai MC, Hsia YJ, Chang TJ (2008) Estimation of sensible heat, water vapor, and CO(2) fluxes using the flux-variance method. Int J Biometeorol 52(6):521–533. doi:10.1007/s00484-008-0149-4

    Article  Google Scholar 

  32. Huang J, Bou-Zeid E (2013) Turbulence and vertical fluxes in the stable atmospheric boundary-layer I: a large-eddy simulation study. J Atmos Sci. doi:10.1175/JAS-D-12-0167.1

  33. Huang J, Cassiani M, Albertson JD (2009a) Analysis of coherent structures within the atmospheric boundary layer. Boundary-Layer Meteorol 131(2):147–171. doi:10.1007/s10546-009-9357-7

    Article  Google Scholar 

  34. Huang J, Cassiani M, Albertson JD (2009b) The effects of vegetation density on coherent turbulent structures within the canopy sublayer: a large-eddy simulation study. Boundary-Layer Meteorol 133(2):253–275. doi:10.1007/s10546-009-9423-1

    Article  Google Scholar 

  35. Huang J, Cassiani M, Albertson JD (2011) Coherent turbulent structures across a vegetation discontinuity. Boundary-Layer Meteorol 140(1):1–22. doi:10.1007/s10546-011-9600-x

    Article  Google Scholar 

  36. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York

    Google Scholar 

  37. Katul G, Goltz SM, Hsieh CI, Cheng Y, Mowry F, Sigmon J (1995) Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and nonuniform terrain. Boundary-Layer Meteorol 74(3):237–260. doi:10.1007/BF00712120

    Article  Google Scholar 

  38. Katul G, Hsieh CI, Oren R, Ellsworth D, Phillips N (1996) Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorol 80(3):249–282

    Google Scholar 

  39. Katul GG, Albertson JD (1998) An investigation of higher-order closure models for a forested canopy. Boundary-Layer Meteorol 89(1):47–74. doi:10.1023/A:1001509106381

    Article  Google Scholar 

  40. Katul GG, Chang WH (1999) Principal length scales in second-order closure models for canopy turbulence. J Appl Meteorol 38(11):1631–1643. doi:10.1175/1520-0450(1999)038<1631:PLSISO>2.0.CO;2

    Google Scholar 

  41. Katul GG, Sempreviva AM, Cava D (2008) The temperature–humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126(2):263–278. doi:10.1007/s10546-007-9236-z

    Article  Google Scholar 

  42. Katul GG, Cava D, Launiainen S, Vesala T (2009) An analytical model for the two-scalar covariance budget inside a uniform dense canopy. Boundary-Layer Meteorol 131(2):173–192. doi:10.1007/s10546-009-9361-y

    Article  Google Scholar 

  43. Koeltzsch K (2000) The height dependence of the turbulent Schmidt number within the boundary layer. Atmos Environ 34(7):1147–1151. doi:10.1016/S1352-2310(99)00369-6

    Article  Google Scholar 

  44. Kosovic B (1997) Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J Fluid Mech 336:151–182. doi:10.1017/S0022112096004697

    Article  Google Scholar 

  45. Lamaud E, Irvine M (2006) Temperature-humidity dissimilarity and heat-to-water-vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio. Boundary-Layer Meteorol 120(1):87–109. doi:10.1007/s10546-005-9032-6

    Article  Google Scholar 

  46. Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a markovian analysis. Boundary-Layer Meteorol 52(3):247–258. doi:10.1007/BF00122089

    Article  Google Scholar 

  47. Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140:243–262. doi:10.1007/s10546-011-9613-5

    Article  Google Scholar 

  48. Lumley JL (1967) The structure of inhomogeneous turbulent flows. In: Yagolm AM, Tatarsky VI (eds) Atmospheric turbulence and radio wave propagation. Nauka, Moscow, pp 166–178

    Google Scholar 

  49. Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New York

    Google Scholar 

  50. Lumley JL (1981) Coherent structures in turbulence. In: Meyer RE (ed) Transition and turbulence. Academic Press, New York, pp 215–241

    Google Scholar 

  51. Mason PJ, Thomson DJ (1992) Stochastic backscatter in large-eddy simulations of boundary-layers. J Fluid Mech 242:51–78. doi:10.1017/S0022112092002271

    Article  Google Scholar 

  52. Moeng CH (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41(13):2052–2062. doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2

  53. Moin P, Moser RD (1989) Characteristic-eddy decomposition of turbulence in a channel. J Fluid Mech 200:471–509. doi:10.1017/S0022112089000741

    Article  Google Scholar 

  54. Poggi D, Katul GG, Albertson JD (2004a) Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol 111(3):589–614. doi:10.1023/B:BOUN.0000016502.52590.af

    Article  Google Scholar 

  55. Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004b) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol 111(3):565–587. doi:10.1023/B:BOUN.0000016576.05621.73

    Article  Google Scholar 

  56. Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284

    Article  Google Scholar 

  57. Porté-Agel F, Wu YT, Lu H, Conzemius RJ (2011) Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J Wind Eng Ind Aerodyn 99(4):154–168. doi:10.1016/j.jweia.2011.01.011

    Article  Google Scholar 

  58. Raupach MR (1981) Conditional statistics of reynolds stress in rough-wall and smooth-wall turbulent boundary-layers. J Fluid Mech 108(Jul):363–382. doi:10.1017/S0022112081002164

  59. Raupach MR (1988) Canopy transport processes. In: Steffen WL, Denmead OT (eds) Flow and transport in the natural environment: advances and applications. Springer, Berlin, pp 95–127

    Chapter  Google Scholar 

  60. Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Annu Rev Fluid Mech 13:97–129. doi:10.1146/annurev.fl.13.010181.000525

    Article  Google Scholar 

  61. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78:351–382

    Article  Google Scholar 

  62. Scanlon TM, Albertson JD (2001) Turbulent transport of carbon dioxide and water vapor within a vegetation canopy during unstable conditions: identification of episodes using wavelet analysis. J Geophys Res 106(D7):7251–7262. doi:10.1029/2000JD900662

    Google Scholar 

  63. Scanlon TM, Kustas WP (2010) Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agric For Meteorol 150(1):89–99. doi:10.1016/j.agrformet.2009.09.005

    Article  Google Scholar 

  64. Scanlon TM, Sahu P (2008) On the correlation structure of water vapor and carbon dioxide in the atmospheric surface layer: a basis for flux partitioning. Water Resour Res 44(10):W10418. doi:10.1029/2008WR006932

  65. Schmidt H, Schumann U (1989) Coherent structure of the convective boundary-layer derived from large-eddy simulations. J Fluid Mech 200:511–562. doi:10.1017/S0022112089000753

    Article  Google Scholar 

  66. Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent-flow above and within a forest. Boundary-Layer Meteorol 61(1–2):47–64. doi:10.1007/BF02033994

    Article  Google Scholar 

  67. Sirovich L (1987a) Turbulence and the dynamics of coherent structures. 1. Coherent structures. Q Appl Math 45(3):561–571

    Google Scholar 

  68. Sirovich L (1987b) Turbulence and the dynamics of coherent structures. 2. Symmetries and transformations. Q Appl Math 45(3):573–582

    Google Scholar 

  69. Sirovich L (1987c) Turbulence and the dynamics of coherent structures. 3. Dynamics and scaling. Q Appl Math 45(3):583–590

    Google Scholar 

  70. Smith TR, Moehlis J, Holmes P (2005) Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn 41(1–3):275–307. doi:10.1007/s11071-005-2823-y

    Article  Google Scholar 

  71. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  72. Sullivan PP, McWilliams JC, Moeng CH (1996) A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 80(1–2):167–202. doi:10.1007/BF00119016

    Article  Google Scholar 

  73. Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123(2):317–337. doi:10.1007/s10546-006-9144-7

    Article  Google Scholar 

  74. Thomas C, Martin JG, Goeckede M, Siqueira MB, Foken T, Law BE, Loescher HW, Katul G (2008) Estimating daytime subcanopy respiration from conditional sampling methods applied to mufti-scalar high frequency turbulence time series. Agric For Meteorol 148(8–9):1210–1229. doi:10.1016/j.agrformet.2008.03.002

    Article  Google Scholar 

  75. Vesala T, Kljun N, Rannik U, Rinne J, Sogachev A, Markkanen T, Sabelfeld K, Foken T, Leclerc MY (2008) Flux and concentration footprint modelling: state of the art. Environ Pollut 152(3):653–666. doi:10.1016/j.envpol.2007.06.070

    Article  Google Scholar 

  76. Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122(1):149–165. doi:10.1007/s10546-006-9097-x

    Article  Google Scholar 

  77. Wilson NR, Shaw RH (1977) Higher-order closure model for canopy flow. J Appl Meteorol 16(11):1197–1205. doi:10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2

    Google Scholar 

  78. Yang B, Morse AP, Shaw RH, Paw U KT (2006a) Large-eddy simulation of turbulent flow across a forest edge. Part II: momentum and turbulent kinetic energy budgets. Boundary-Layer Meteorol 121(3):433–457. doi:10.1007/s10546-006-9083-3

    Article  Google Scholar 

  79. Yang B, Raupach MR, Shaw RH, Tha K, Paw U KT, Morse AP (2006b) Large-eddy simulation of turbulent flow across a forest edge. Part I: flow statistics. Boundary-Layer Meteorol 120(3):377–412. doi:10.1007/s10546-006-9057-5

Download references

Acknowledgments

Huang and Albertson acknowledge the support provided by the Department of Energy Southeastern Regional Center of the National Institute for Climate Change Research (Grant # DE-FC02-06ER64156), and by the United States Department of Agriculture (Grant # 58-1265-5-046-02). Katul acknowledges support from the U.S. Department of Energy through the Office of Biological and Environmental Research (BER) Terrestrial Carbon Processes (TCP) program (DE-SC000697), the National Science Foundation (NSF-AGS-1102227, NSF-EAR-10-13339, and NSF-CBET-103347), the U.S. Department of Agriculture (2011-67003-30222), and the Binational Agricultural Research and Development (BARD) fund ( IS-4374-11C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Huang.

Appendix 1: A general POD approach in the wavenumber space

Appendix 1: A general POD approach in the wavenumber space

For continuous applications, Eq. (9) has a countable infinity of solutions [27], each including an eigenvalue \( \lambda ^{(n)}\) and an associated eigenfunction \( \hat{\phi }_i^{(n)} \), where the index \(n\) is added to distinguish between different solutions. However, for the application of this paper, the approach of discretization needs to be conducted such that the solutions are finite (see e.g. [70]). For convenience, we maintain the notation of continuous conditions. The eigenfunctions are orthogonal and can be normalized such that

$$\begin{aligned} \int _H\hat{\phi }_i^{(m)}(k_x,k_y,z)\hat{\phi }_i^{(n)*}(k_x,k_y,z){\mathrm{d}}z=\delta _{mn}. \end{aligned}$$
(17)

We may sort the series of solutions by decreasing magnitude of the modulus of \(\lambda ^{(n)}\) such that \(\lambda ^{(1)}>\lambda ^{(2)}>\cdots \), and define eigenmode as \(\hat{\psi }_i^{(n)}=\sqrt{\lambda ^{(n)}}\hat{\phi }_i^{(n)}\) such that \(\hat{\psi }_i^{(n)}\) carry the information of both the spatial shape and its importance toward describing the variance [19]. The POD of \(\hat{{\mathrm{V}}}\) can now be expressed based on the eigenfunctions,

$$\begin{aligned} \hat{{\mathrm{V}}}_i(k_x,k_y,z,t)=\sum _{n=1}^\infty \hat{a}^{(n)}(k_x,k_y,t)\hat{\phi }_i^{(n)}(k_x,k_y,z), \end{aligned}$$
(18)

where \(\hat{a}^{(n)}\) is the coefficient corresponding to \(\hat{\phi }_i^{(n)}\). Multiply both sides of Eq. (18) by \(\hat{\phi }_i^{(m)*}\), integrate in \(z\) over \(H\) and then substitute Eq. (17) into the resulting equation, we obtain the expression of the coefficient \(\hat{a}^{(n)}\) as

$$\begin{aligned} \hat{a}^{(n)}(k_x,k_y,t)=\int _{H}\hat{{\mathrm{V}}}_i(k_x,k_y,z,t)\hat{\phi }_i^{(n)*}(k_x,k_y,z){\mathrm{d}}z. \end{aligned}$$
(19)

\(\hat{a}^{(n)}\) is also orthogonal across different solutions in the sense that

$$\begin{aligned} \langle \hat{a}^{(m)}(k_x,k_y,t)\hat{a}^{(n)*}(k_x,k_y,t)\rangle _t=\delta _{mn}\lambda (k_x,k_y). \end{aligned}$$
(20)

Combining Eq. (10) and Eq. (18), we can obtain the reconstruction formula of \(\varPhi _{ij}\) from \(\hat{\phi }_i^{(n)}\) as

$$\begin{aligned} \varPhi _{ij}(k_x,k_y,z,\tilde{z})=\sum _{n=1}^\infty \lambda ^{(n)}(k_x,k_y)\hat{\phi }_i^{(n)}(k_x,k_y,z)\hat{\phi }_j^{(n)*}(k_x,k_y,\tilde{z}). \end{aligned}$$
(21)

The two-point correlation tensor is the inverse Fourier transform of Eq. (21)

$$\begin{aligned}&R_{ij}(r_x,r_y,z,\tilde{z})\nonumber \\&\quad =\frac{1}{4\pi ^2}\sum _{n=1}^\infty \int \int \lambda ^{(n)}(k_x,k_y)\hat{\phi }_i^{(n)}(k_x,k_y,z)\hat{\phi }_j^{(n)*}(k_x,k_y,\tilde{z})e^{ik_xr_x+ik_yr_y}{\mathrm{d}}k_x{\mathrm{d}}k_y, \end{aligned}$$
(22)

where \(r_x\) and \(r_y\) are separation distances in \(x\) and \(y\), respectively. Letting \(r_x = r_y = 0\) and \(z = \tilde{z}\) leads to the one-point second-order statistics

$$\begin{aligned} \langle {\mathrm{V}}_i{\mathrm{V}}_j\rangle (z)=\frac{1}{4\pi ^2}\sum _{n=1}^\infty \int \int \lambda ^{(n)}(k_x,k_y)\hat{\phi }_i^{(n)}(k_x,k_y,z)\hat{\phi }_j^{(n)*}(k_x,k_y,z)e^{ik_xr_x+ik_yr_y}{\mathrm{d}}k_x{\mathrm{d}}k_y.\nonumber \\ \end{aligned}$$
(23)

Furthermore, letting \(i = j\) and integrating \(z\) over \(H\), the conservation of the overall variance is given by

$$\begin{aligned} E=\int _H\langle {\mathrm{V}}_i{\mathrm{V}}_i\rangle (z){\mathrm{d}}z=\frac{1}{4\pi ^2}\sum _{n=1}^\infty \int \int \lambda ^{(n)}(k_x,k_y){\mathrm{d}}k_x{\mathrm{d}}k_y. \end{aligned}$$
(24)

If we write \(\varLambda ^{(n)}=\frac{1}{4\pi ^2}\sum _{n=1}^\infty \int \int \lambda ^{(n)}(k_x,k_y){\mathrm{d}}k_x{\mathrm{d}}k_y\), then

$$\begin{aligned} E=\sum _{n=1}^\infty \varLambda ^{(n)}. \end{aligned}$$
(25)

The original field of \({\mathrm{V}}_i\) can be approximated by a truncated reconstruction using the first \(p\) eigenvalue/eigenfunction solutions [conf. Eq. (18)]:

$$\begin{aligned} {\mathrm{V}}_i^{(p)}(x,y,z,t)=\frac{1}{4\pi ^2}\sum _{n=1}^p\int \int \hat{a}^{(n)}(k_x,k_y,t)\hat{\phi }_i^{(n)}(k_x,k_y,z)e^{ik_xr_x+ik_yr_y}{\mathrm{d}}k_x{\mathrm{d}}k_y, \end{aligned}$$
(26)

and the contribution of \({\mathrm{V}}_i^{(p)}\) to the second-order statistics is given by,

$$\begin{aligned} \langle {\mathrm{V}}_i^{(p)}{\mathrm{V}}_j^{(p)}\rangle (z)\!=\!\frac{1}{4\pi ^2}\sum _{n=1}^p\!\int \int \!\lambda ^{(n)}(k_x,k_y)\hat{\phi }_i^{(n)}(k_x,k_y,z)\hat{\phi }_j^{(n)*}(k_x,k_y,z)e^{ik_xr_x+ik_yr_y}{\mathrm{d}}k_x{\mathrm{d}}k_y.\nonumber \\ \end{aligned}$$
(27)

The 3D coherent structure has been referred to here as the first eigenmode \(\psi _i^{(1)}\) since \(\varLambda ^{(1)}\) represents the greatest percentage of \(E\) out of all other non-Fourier-mode choices of the coherent structure [19, 27, 33, 34, 53]. However, the POD framework does not provide the phase angles for \(\phi _i^{(1)}\), which are critical in determining the spatial shape of the coherent structure in the physical space. This issue is commonly tackled through the shot-effect expansion theory [50] in conjunction with an extra assumption regarding the physical property of the coherent structure. For example, Lumley [50] proposed the bi-spectrum or three-point correlation criterion, which states that the coherent structure should conserve as much as possible the three-point correlation of the original velocity field. The second method, termed the ‘compactness criterion’, was originally proposed by [26], and assumes that the coherent structure is spatially compact. The third method is termed the ‘wavenumber continuity’ or the ‘spectral smoothness’ criterion, which implies that the phase angle of the coherent structure is continuous in wavenumber space [53]. In this paper, we apply the compactness criterion considering that the coherent structures in the CSL revealed by flow visualization experiments are typically compact [55]. Finnigan et al. [20] compared the coherent structures derived from the POD together with the compactness criterion and from a conditional average method using local maxima of static pressure at the canopy top as a trigger, and found that unlike the latter, the former does not reveal that a sweep motion is often followed by an ejection motion downstream. However, this does not affect our use of the POD approach as far as the topic of this paper is concerned because scalar dissimilarity is dominant in the vertical direction. Additionally, the orientation of the coherent structure is forced to be consistent with a sweep motion owing to the known fact that sweep is the dominant contributor to the Reynolds stress within the canopy [19]. Denoting the phase angles as \(\eta (k_x,k_y)\), the coherent structure can now be written as

$$\begin{aligned} \psi _i^{(1)}(r_x,r_y,z)=\frac{1}{4\pi ^2}\int \int \sqrt{\lambda ^{(1)}(k_x,k_y)}\hat{\phi }_i^{(1)}(k_x,k_y,z)e^{ik_xr_x+ik_yr_y+i\eta (k_x,k_y)}{\mathrm{d}}k_x{\mathrm{d}}k_y. \end{aligned}$$
(28)

\(\psi _i^{(1)}\) connects to \({\mathrm{V}}_i^{(1)}\) by

$$\begin{aligned} {\mathrm{V}}_i^{(1)}(x,y,z,t)=\int \int \psi _i^{(1)}(x-\tilde{x},y-\tilde{y},z)\beta (\tilde{x},\tilde{y},t){\mathrm{d}}\tilde{x}{\mathrm{d}}\tilde{y}, \end{aligned}$$
(29)

where

$$\begin{aligned} \beta (x,y,t)=\frac{1}{4\pi ^2}\int \int \hat{a}^{(1)}(k_x,k_y,t)e^{-i\eta {k_x,k_y}} \Bigg / \sqrt{\lambda ^{(1)}(k_x,k_y)}{\mathrm{d}}k_x{\mathrm{d}}k_y, \end{aligned}$$
(30)

and \(\beta (x,y,t)\) satisfies

$$\begin{aligned} \langle \beta (x,y,t)\beta (\tilde{x},\tilde{y},t)\rangle _t=\delta (x-\tilde{x},y-\tilde{y}). \end{aligned}$$
(31)

The variance \(\varLambda ^{(1)}\) is conserved in \({\mathrm{V}}_i^{(1)}\) as well as in \(\psi _i^{(1)}\), given by

$$\begin{aligned} \int \!\!\int \!\!\int \langle {\mathrm{V}}_i^{(1)}(x,y,z,t)^2\rangle _t{\mathrm{d}}x{\mathrm{d}}y{\mathrm{d}}z=\int \!\!\int \!\!\int \psi _i^{(1)}(r_x,r_y,z)^2{\mathrm{d}}r_x{\mathrm{d}}r_y{\mathrm{d}}z=\varLambda ^{(1)}. \end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Katul, G. & Albertson, J. The role of coherent turbulent structures in explaining scalar dissimilarity within the canopy sublayer. Environ Fluid Mech 13, 571–599 (2013). https://doi.org/10.1007/s10652-013-9280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-013-9280-9

Keywords

Navigation