Adams, R. J., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 1–23. https://doi.org/10.1177/0146621697211001
Article
Google Scholar
Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14–17 20–22, 43–46.
Google Scholar
Baumert, J., & Kunter, M. (2013). The COACTIV Model of Teachers’ Professional Competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 25–48). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4614-5149-5_2
Chapter
Google Scholar
Blömeke, S., Gustafsson, J.-E., & Shavelson, R. J. (2015). Beyond dichotomies: Competence viewed as a continuum. Zeitschrift für Psychologie, 223(1), 3–13. https://doi.org/10.1027/2151-2604/a000194
Article
Google Scholar
Blömeke, S., Hsieh, F.-J., Kaiser, G., & Schmidt, W. H. (2014). International Perspectives on Teacher Knowledge, Beliefs and Opportunities to Learn. TEDS-M Results. Dordrecht, the Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-6437-8
Blömeke, S., & Kaiser, G. (2014). Theoretical framework, study design and main results of TEDS-M. In S. Blömeke, F.-J. Hsieh, G. Kaiser, & W. H. Schmidt (Eds.), International Perspectives on Teacher Knowledge, Beliefs and Opportunities to Learn. TEDS-M Results (pp. 19–47). Dordrecht, the Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-6437-8_2
Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139. https://doi.org/10.1093/teamat/22.3.123
Article
Google Scholar
Blomhøj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education. The 14th ICMI Study (pp. 45–56). Springer US: Boston, MA. https://doi.org/10.1007/978-0-387-29822-1_3
Chapter
Google Scholar
Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education – Discussion document. Educational Studies in Mathematics, 51(1/2), 149–171. https://doi.org/10.1023/A:1022435827400
Article
Google Scholar
Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 73–96). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-12688-3_9
Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling (ICTMA 12): Education, Engineering and Economics (pp. 222–231). Chichester: Horwood. https://doi.org/10.1533/9780857099419.5.221
Chapter
Google Scholar
Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM-Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883
Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-68072-9
Borromeo Ferri, R., & Blum, W. (2010). Mathematical modelling in teacher education – Experiences from a modelling seminar. In Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 2046–2055) Lyon, France. www.inrp.fr/editions/cerme6
Google Scholar
Brunner, M., Anders, Y., Hachfeld, A., & Krauss, S. (2013). The diagnostic skills of mathematics teachers. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV Project (pp. 229–248). Springer US: Boston, MA. https://doi.org/10.1007/978-1-4614-5149-5_11
Chapter
Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (vol. 2). New Jersey, NJ: Lawrence Erlbaum Associates.
Czocher, J. A. (2017). Mathematical modeling cycles as a task design heuristic. The Mathematics Enthusiast, 14(1), 129–140.
Article
Google Scholar
Depaepe, F., & König, J. (2018). General pedagogical knowledge, self-efficacy and instructional practice: Disentangling their relationship in pre-service teacher education. Teaching and Teacher Education, 69, 177–190. https://doi.org/10.1016/j.tate.2017.10.003
Article
Google Scholar
Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 34, 12–25. https://doi.org/10.1016/j.tate.2013.03.001
Article
Google Scholar
Eames, C., Brady, C., Jung, H., Glancy, A., & Lesh, R. (2018). Designing powerful environments to examine and support teacher competencies for models and modelling: Original text – Chapter 8. In R. Borromeo Ferri & W. Blum (Eds.), Lehrerkompetenzen zum Unterrichten mathematischer Modellierung (pp. 237–266). Wiesbaden, Germany: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-22616-9_11
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, N.J: Lawrence Erlbaum Associates.
Google Scholar
Epstein, R. M., & Hundert, E. M. (2002). Defining and assessing professional competence. JAMA, 287(2), 226–235. https://doi.org/10.1001/jama.287.2.226
Article
Google Scholar
Evens, M., Elen, J., & Depaepe, F. (2015). Developing pedagogical content knowledge: Lessons learned from intervention studies. Education Research International, 2015, 1–23. https://doi.org/10.1155/2015/790417
Article
Google Scholar
Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). Thousand Oaks, CA: SAGE Publications.
Google Scholar
Fischer, G. H. (1997). Unidimensional linear logistic rasch models. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of Modern Item Response Theory (pp. 225–243). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4757-2691-6_13
Chapter
Google Scholar
Frejd, P., & Bergsten, C. (2016). Mathematical modelling as a professional task. Educational Studies in Mathematics, 91(1), 11–35. https://doi.org/10.1007/s10649-015-9654-7
Article
Google Scholar
Galbraith, P. (2015). ‘Noticing’ in the practice of modelling as real world problem solving. In G. Kaiser & H.-W. Henn (Eds.), Werner Blum und seine Beiträge zum Modellieren im Mathematikunterricht. Festschrift zum 70. Geburtstag von Werner Blum (pp. 151–166). Wiesbaden, Germany: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-09532-1_11
Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM-Mathematics Education, 38(2), 143–162. https://doi.org/10.1007/BF02655886
Greefrath, G., Kaiser, G., Blum, W., & Borromeo Ferri, R. (2013). Mathematisches Modellieren – Eine Einführung in theoretische und didaktische Hintergründe. In R. Borromeo Ferri, G. Greefrath, & G. Kaiser (Eds.), Mathematisches Modellieren für Schule und Hochschule (pp. 11–37). Wiesbaden, Germany: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-01580-0_1
Haines, C., & Crouch, R. (2001). Recognizing constructs within mathematical modelling. Teaching Mathematics and its Applications, 20(3), 129–138. https://doi.org/10.1093/teamat/20.3.129
Article
Google Scholar
Hankeln, C., Adamek, C., & Greefrath, G. (2019). Assessing sub-competencies of mathematical modelling—Development of a new test instrument. In G. Stillman & J. Brown (Eds.), Lines of Inquiry in Mathematical Modelling Research in Education (pp. 143–160). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-14931-4_8
Hankeln, C., & Greefrath, G. (2020). Mathematische Modellierungskompetenz fördern durch Lösungsplan oder Dynamische Geometrie-Software? Empirische Ergebnisse aus dem LIMo-Projekt. Journal für Mathematik-Didaktik. https://doi.org/10.1007/s13138-020-00178-9
Hattie, J. A. C. (2003). Teachers make a difference: What is the research evidence? Presented at the Building Teacher Quality: What does the research tell us ACER Research Conference, Melbourne, Australia. http://research.acer.edu.au/research_conference_2003/4/
Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling (ICTMA 12): Education, Engineering and Economics (pp. 110–119). Chichester: Horwood. https://doi.org/10.1533/9780857099419.3.110
Chapter
Google Scholar
Kaiser, G. (2020). Mathematical modelling and applications in education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 553–561). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_101
Kaiser, G., & Brand, S. (2015). Modelling competencies: Past development and further perspectives. In G. Stillman, W. Blum, & M. Salett Biembengut (Eds.), Mathematical Modelling in Education Research and Practice (pp. 129–149). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-18272-8_10
Kaiser, G., Schwarz, B., & Tiedemann, S. (2010). Future teachers’ professional knowledge on modeling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling Students’ Mathematical Modeling Competencies (pp. 433–444). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-0561-1_37
Chapter
Google Scholar
Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM-Mathematics Education, 38(3), 302–310. https://doi.org/10.1007/BF02652813
Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching Mathematical Modelling: Connecting to Research and Practice (pp. 277–293). Dordrecht, the Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-6540-5_23
Klieme, E., Hartig, J., & Rauch, D. (2008). The concept of competence in educational contexts. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 3–22). Toronto, Canada: Hogrefe & Huber Publishers.
Klock, H., & Wess, R. (2018). Lehrerkompetenzen zum mathematischen Modellieren: Test zur Erfassung von Aspekten professioneller Kompetenz zum Lehren mathematischen Modellierens. Münster, Germany: ULB Münster. http://nbn-resolving.de/urn:nbn:de:hbz:6-35169679459
Klock, H., Wess, R., Greefrath, G., & Siller, H.-S. (2019). Aspekte professioneller Kompetenz zum Lehren mathematischen Modellierens bei (angehenden) Lehrkräften – Erfassung und Evaluation. In E. Christophel, M. Hemmer, F. Korneck, T. Leuders, & P. Labudde (Eds.), Fachdidaktische Forschung zur Lehrerbildung (pp. 135–146). Münster, Germany: Waxmann.
Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: Validation of the COACTIV constructs. ZDM-Mathematics Education, 40(5), 873–892. https://doi.org/10.1007/s11858-008-0141-9
Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725. https://doi.org/10.1037/0022-0663.100.3.716
Kunter, M., & Baumert, J. (2013). The COACTIV research program on teachers’ professional competence: Summary and discussion. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 345–368). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4614-5149-5_18
Chapter
Google Scholar
Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013). Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV Project. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4614-5149-5
Book
Google Scholar
Kuntze, S. (2011). In-service and prospective teachers’ views about modelling tasks in the mathematics classroom – results of a quantitative empirical study. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (vol. 1, pp. 279–288). Dordrecht, the Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-0910-2_28
Leiß, D., & Wiegand, B. (2005). A classification of teacher interventions in mathematics teaching. Zentralblatt für Didaktik der Mathematik, 37(3), 240–245. https://doi.org/10.1007/s11858-005-0015-3
Article
Google Scholar
Lingefjärd, T. (2007). Mathematical modelling in teacher education — Necessity or unnecessarily. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education (vol. 10, pp. 333–340). Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-29822-1_35
Chapter
Google Scholar
Ludlow, L. H., & O’leary, M. (1999). Scoring omitted and not-reached items: Practical data analysis implications. Educational and Psychological Measurement, 59(4), 615–630. https://doi.org/10.1177/0013164499594004
Article
Google Scholar
Maaß, K. (2006). What are modelling competencies? ZDM-Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885
Maaß, K. (2010). Classification scheme for modelling tasks. Journal für Mathematik-Didaktik, 31(2), 285–311. https://doi.org/10.1007/s13138-010-0010-2
Article
Google Scholar
Maaß, K., & Gurlitt, J. (2011). LEMA – Professional development of teachers in relation to mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (vol. 1, pp. 629–639). Dordrecht, the Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-0910-2_60
Mislevy, R. J., & Wu, P.-K. (1996). Missing responses and IRT ability estimation: Omits, choice, time limits, and adaptive testing. ETS Research Report Series, 1996(2), i–36. https://doi.org/10.1002/j.2333-8504.1996.tb01708.x
Article
Google Scholar
Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (vol. 10, pp. 3–32). Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-29822-1_1
Chapter
Google Scholar
Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (vol. 10, pp. 201–208). Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-29822-1_20
Chapter
Google Scholar
Peressini, D., Borko, H., Romagnano, L., Knuth, E., & Willis, C. (2004). A conceptual framework for learning to teach secondary mathematics: A situative perspective. Educational Studies in Mathematics, 56(1), 67–96. https://doi.org/10.1023/B:EDUC.0000028398.80108.87
Article
Google Scholar
Schukajlow, S., Achmetli, K., & Rakoczy, K. (2019). Does constructing multiple solutions for real-world problems affect self-efficacy? Educational Studies in Mathematics, 100(1), 43–60. https://doi.org/10.1007/s10649-018-9847-y
Article
Google Scholar
Schukajlow, S., Krug, A., & Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89(3), 393–417. https://doi.org/10.1007/s10649-015-9608-0
Article
Google Scholar
Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004
Article
Google Scholar
Siller, H.-S., & Greefrath, G. (2020). Modelling tasks in central examinations based on the example of Austria. In G. Stillman, G. Kaiser, & C. E. Lampen (Eds.), Mathematical modelling education and sense-making (pp. 383–392). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-37673-4_33
Stender, P. (2019). Heuristic strategies as a toolbox in complex modelling problems. In G. Stillman & J. P. Brown (Eds.), Lines of inquiry in mathematical modelling research in education (pp. 197–212). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-14931-4_11
Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (vol. 1, pp. 165–180). Dordrecht, the Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-0910-2_18
Stillman, G. (2015). Applications and modelling research in secondary classrooms: What have we learnt? In S. J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 791–805). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-17187-6_44
Tan, L. S., & Ang, K. C. (2013). Pre-service secondary school teachers’ knowledge in mathematical modelling – A case study. In G. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 373–383). Dordrecht, the Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-6540-5_31
Tropper, N., Leiss, D., & Hänze, M. (2015). Teachers’ temporary support and worked-out examples as elements of scaffolding in mathematical modeling. ZDM-Mathematics Education, 47(7), 1225–1240. https://doi.org/10.1007/s11858-015-0718-z
van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/s10648-010-9127-6
Article
Google Scholar
van de Pol, J., Volman, M., Oort, F., & Beishuizen, J. (2014). Teacher scaffolding in small-group work: An intervention study. Journal of the Learning Sciences, 23(4), 600–650. https://doi.org/10.1080/10508406.2013.805300
Article
Google Scholar
Vorhölter, K., Krüger, A., & Wendt, L. (2019). Chapter 2: Metacognition in mathematical modeling – An overview. In S. A. Chamberlin & B. Sriraman (Eds.), Affect in Mathematical Modeling (pp. 29–51). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-04432-9_3
Vos, P. (2018). “How real people really need mathematics in the real world”—Authenticity in mathematics education. Education Sciences, 8(4), 195. https://doi.org/10.3390/educsci8040195
Article
Google Scholar
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427–450.
Article
Google Scholar
Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Göttingen, Germany: Hogrefe.
Wess, R., Klock, H., Siller, H.-S., & Greefrath, G. (2021). Measuring professional competence for the teaching of mathematical modelling. In F. K. S. Leung, G. A. Stillman, G. Kaiser, & K. L. Wong (Eds.), Mathematical Modelling Education in East and West (pp. 249–260). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-66996-6_21
Zöttl, L., Ufer, S., & Reiss, K. (2010). Modelling with heuristic worked examples in the KOMMA learning environment. Journal für Mathematik-Didaktik, 31(1), 143–165. https://doi.org/10.1007/s13138-010-0008-9
Article
Google Scholar
Zöttl, L., Ufer, S., & Reiss, K. (2011). Assessing modelling competencies using a multidimensional IRT approach. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (vol. 1, pp. 427–437). Dordrecht, the Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-0910-2_42