Skip to main content
Log in

Antitumor activity of mianserin (a tetracyclic antidepressant) primarily driven by the inhibition of SLC1A5-mediated glutamine transport

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Targeting tumor metabolic vulnerabilities such as “glutamine addiction” has become an attractive approach for the discovery of novel antitumor agents. Among various mechanisms explored, SLC1A5, a membrane transporter that plays an important role in glutamine cellular uptake, represents a viable target to interfere with tumor’s ability to acquire critical nutrients during proliferation. In the present study, a stably transfected HEK293 cell line with human SLC1A5 (HEK293-SLC1A5) was established for the screening and identification of small molecule SLC1A5 inhibitors. This in vitro system, in conjunction with direct measurement of SLC1A5-mediated L-glutamine-2,3,3,4,4-D5 (substrate) uptake, was practical and efficient in ensuring the specificity of SLC1A5 inhibition. Among a group of diverse compounds tested, mianserin (a tetracyclic antidepressant) demonstrated a marked inhibition of SLC1A5-mediated glutamine uptake. Subsequent investigations using SW480 cells demonstrated that mianserin was capable of inhibiting SW480 tumor growth both in vitro and in vivo, and the in vivo antitumor efficacy was correlated to the reduction of glutamine concentrations in tumor tissues. Computational analysis revealed that hydrophobic interactions between SLC1A5 and its inhibitors could be a critical factor in drug design. Taken together, the current findings confirmed the feasibility of targeting SLC1A5-mediated glutamine uptake as a novel approach for antitumor intervention. It is anticipated that structural insights obtained based on homology modeling would lead to the discovery of more potent and specific SLC1A5 inhibitors for clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6

Similar content being viewed by others

Data Availability

The data presented in this study are available in the paper and Supplementary Information.

References

  1. Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL (2020) Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 72(1):343–379. https://doi.org/10.1124/pr.118.015735

    Article  CAS  PubMed  Google Scholar 

  2. Yahyaoui R, Pérez-Frías J (2019) Amino Acid Transport Defects in Human Inherited Metabolic Disorders. Int J Mol Sci 21(1). https://doi.org/10.3390/ijms21010119

  3. Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059

    Article  CAS  PubMed  Google Scholar 

  4. Pizzagalli MD, Bensimon A, Superti-Furga G (2021) A guide to plasma membrane solute carrier proteins. FEBS J 288(9):2784–2835. https://doi.org/10.1111/febs.15531

    Article  CAS  PubMed  Google Scholar 

  5. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433. https://doi.org/10.1016/j.tibs.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scalise M, Pochini L, Console L, Losso MA, Indiveri C (2018) The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol 6:96. https://doi.org/10.3389/fcell.2018.00096

    Article  PubMed  PubMed Central  Google Scholar 

  7. Willems L, Jacque N, Jacquel A, Neveux N, Maciel TT, Lambert M, Schmitt A, Poulain L, Green AS, Uzunov M et al (2013) Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 122(20):3521–3532. https://doi.org/10.1182/blood-2013-03-493163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST, Kondo J, Coffey RJ, Johnson MO, Rathmell JC et al (2018) Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med 24(2):194–202. https://doi.org/10.1038/nm.4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng Y, Pathria G, Heynen-Genel S, Jackson M, James B, Yin J, Scott DA, Ronai ZA (2021) Identification and Characterization of IMD-0354 as a Glutamine Carrier Protein Inhibitor in Melanoma. Mol Cancer Ther 20(5):816–832. https://doi.org/10.1158/1535-7163.Mct-20-0354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toda K, Nishikawa G, Iwamoto M, Itatani Y, Takahashi R, Sakai Y, Kawada K (2017) Clinical Role of ASCT2 (SLC1A5) in KRAS-Mutated Colorectal Cancer. Int J Mol Sci 18(8). https://doi.org/10.3390/ijms18081632

  11. Ma H, Wu Z, Peng J, Li Y, Huang H, Liao Y, Zhou M, Sun L, Huang N, Shi M et al (2018) Inhibition of SLC1A5 sensitizes colorectal cancer to cetuximab. Int J Cancer 142(12):2578–2588. https://doi.org/10.1002/ijc.31274

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki M, Toki H, Furuya A, Ando H (2017) Establishment of monoclonal antibodies against cell surface domains of ASCT2/SLC1A5 and their inhibition of glutamine-dependent tumor cell growth. Biochem Biophys Res Commun 482(4):651–657. https://doi.org/10.1016/j.bbrc.2016.11.089

    Article  CAS  PubMed  Google Scholar 

  13. Wang W, Zou W (2020) Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell 80(3):384–395. https://doi.org/10.1016/j.molcel.2020.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garibsingh RA, Ndaru E, Garaeva AA, Shi Y, Zielewicz L, Zakrepine P, Bonomi M, Slotboom DJ, Paulino C, Grewer C et al (2021) Rational design of ASCT2 inhibitors using an integrated experimental-computational approach. Proc Natl Acad Sci U S A 118(37). https://doi.org/10.1073/pnas.2104093118

  15. Osanai-Sasakawa A, Hosomi K, Sumitomo Y, Takizawa T, Tomura-Suruki S, Imaizumi M, Kasai N, Poh TW, Yamano K, Yong WP et al (2018) An anti-ASCT2 monoclonal antibody suppresses gastric cancer growth by inducing oxidative stress and antibody dependent cellular toxicity in preclinical models. Am J Cancer Res 8(8):1499–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazzei M, Vascellari M, Zanardello C, Melchiotti E, Vannini S, Forzan M, Marchetti V, Albanese F, Abramo F (2019) Quantitative real time polymerase chain reaction (qRT-PCR) and RNAscope in situ hybridization (RNA-ISH) as effective tools to diagnose feline herpesvirus-1-associated dermatitis. Vet Dermatol 30(6):491-e147. https://doi.org/10.1111/vde.12787

    Article  PubMed  Google Scholar 

  17. Bai X, Moraes TF, Reithmeier RAF (2017) Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol 34(1–2):1–32. https://doi.org/10.1080/09687688.2018.1448123

    Article  CAS  PubMed  Google Scholar 

  18. Altamura AC, De Novellis F, Mauri MC, Gomeni R (1987) Plasma and brain pharmacokinetics of mianserin after single and multiple dosing in mice. Prog Neuropsychopharmacol Biol Psychiatry 11(1):23–33. https://doi.org/10.1016/0278-5846(87)90028-5

    Article  CAS  PubMed  Google Scholar 

  19. Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, Reyes N (2017) Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544(7651):446–451. https://doi.org/10.1038/nature22064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(Web Server issue):W252–258. https://doi.org/10.1093/nar/gku340

  21. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350. https://doi.org/10.1093/bioinformatics/btq662

    Article  CAS  PubMed  Google Scholar 

  22. Sybyl-X 2.0 (2012) Tripos International, St, USA, Louis, MO

  23. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36(22):3219–3228

    Article  CAS  Google Scholar 

  24. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134

    Article  CAS  Google Scholar 

  26. Colas C, Grewer C, Otte NJ, Gameiro A, Albers T, Singh K, Shere H, Bonomi M, Holst J, Schlessinger A (2015) Ligand Discovery for the Alanine-Serine-Cysteine Transporter (ASCT2, SLC1A5) from Homology Modeling and Virtual Screening. PLoS Comput Biol 11(10):e1004477. https://doi.org/10.1371/journal.pcbi.1004477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garibsingh RA, Otte NJ, Ndaru E, Colas C, Grewer C, Holst J, Schlessinger A (2018) Homology Modeling Informs Ligand Discovery for the Glutamine Transporter ASCT2. Front Chem 6:279. https://doi.org/10.3389/fchem.2018.00279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ni Y, Duan Z, Zhou D, Liu S, Wan H, Gui C, Zhang H (2020) Identification of Structural Features for the Inhibition of OAT3-Mediated Uptake of Enalaprilat by Selected Drugs and Flavonoids. Front Pharmacol 11:802. https://doi.org/10.3389/fphar.2020.00802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiang Y, Liu S, Yang J, Wang Z, Zhang H, Gui C (2020) Investigation of the interactions between flavonoids and human organic anion transporting polypeptide 1B1 using fluorescent substrate and 3D-QSAR analysis. Biochim Biophys Acta Biomembr 5:183210. https://doi.org/10.1016/j.bbamem.2020.183210

  30. Garaeva AA, Oostergetel GT, Gati C, Guskov A, Paulino C, Slotboom DJ (2018) Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat Struct Mol Biol 25(6):515–521. https://doi.org/10.1038/s41594-018-0076-y

    Article  CAS  PubMed  Google Scholar 

  31. Yu X, Plotnikova O, Bonin PD, Subashi TA, McLellan TJ, Dumlao D, Che Y, Dong YY, Carpenter EP, West GM et al (2019) Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation. eLife 8. https://doi.org/10.7554/eLife.48120

  32. Albers T, Marsiglia W, Thomas T, Gameiro A, Grewer C (2012) Defining substrate and blocker activity of alanine-serine-cysteine transporter 2 (ASCT2) Ligands with Novel Serine Analogs. Mol Pharmacol 81(3):356–365. https://doi.org/10.1124/mol.111.075648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534. https://doi.org/10.1016/j.cell.2008.11.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scalise M, Pochini L, Pingitore P, Hedfalk K, Indiveri C (2015) Cysteine is not a substrate but a specific modulator of human ASCT2 (SLC1A5) transporter. FEBS Lett 589(23):3617–3623. https://doi.org/10.1016/j.febslet.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  35. Zhang H, Cui K, Yao S, Yin Y, Liu D, Huang Z (2021) Comprehensive molecular and clinical characterization of SLC1A5 in human cancers. Pathol Res Pract 224:153525. https://doi.org/10.1016/j.prp.2021.153525

    Article  CAS  PubMed  Google Scholar 

  36. Brogden RN, Heel RC, Speight TM, Avery GS (1978) Mianserin: a review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs 16(4):273–301. https://doi.org/10.2165/00003495-197816040-00001

    Article  CAS  PubMed  Google Scholar 

  37. Kelder J, Funke C, De Boer T, Delbressine L, Leysen D, Nickolson V (1997) A comparison of the physicochemical and biological properties of mirtazapine and mianserin. J Pharm Pharmacol 49(4):403–411. https://doi.org/10.1111/j.2042-7158.1997.tb06814.x

    Article  CAS  PubMed  Google Scholar 

  38. Raiteri M, Angelini F, Bertollini A (1976) Comparative study of the effects of mianserin, a tetracyclic antidepressant, and of imipramine on uptake and release of neurotransmitters in synaptosomes. J Pharm Pharmacol 28(6):483–488. https://doi.org/10.1111/j.2042-7158.1976.tb02770.x

    Article  CAS  PubMed  Google Scholar 

  39. Olivier B, Soudijn W, van Wijngaarden I (2000) Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. Prog Drug Res 54:59–119. https://doi.org/10.1007/978-3-0348-8391-7_3

    Article  CAS  PubMed  Google Scholar 

  40. Valentini V, Frau R, Di Chiara G (2004) Noradrenaline transporter blockers raise extracellular dopamine in medial prefrontal but not parietal and occipital cortex: differences with mianserin and clozapine. J Neurochem 88(4):917–927. https://doi.org/10.1046/j.1471-4159.2003.02238.x

    Article  CAS  PubMed  Google Scholar 

  41. Bhutia YD (1863) Ganapathy V (2016) Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta 10:2531–2539. https://doi.org/10.1016/j.bbamcr.2015.12.017

    Article  CAS  Google Scholar 

  42. Scalise M, Pochini L, Galluccio M, Console L, Indiveri C (2020) Glutamine transporters as pharmacological targets: From function to drug design. Asian J Pharm Sci 15(2):207–219. https://doi.org/10.1016/j.ajps.2020.02.005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were grateful for the technical assistance provided by Dr. Fanyi Meng during the establishment of the SW480 tumor xenograft model as well as database search and analysis.

Funding

This research was supported by the National Natural Science Foundation of China (No. 82173880).

Author information

Authors and Affiliations

Authors

Contributions

Z.D. and Z.Z. participated in the design and conduct of in vitro and in vivo experiments in addition to data analysis and manuscript drafting and editing. F.L., Y.Z. and X.G. contributed to the establishment of in vitro cell models as well as in vivo xenograft models. C.G. was instrumental in computational analysis and manuscript drafting. H.Z. was involved in conceptualization of the studies and manuscript drafting, editing and finalization.

Corresponding author

Correspondence to Hongjian Zhang.

Ethics declarations

Ethics approval

All experimental procedures were performed in accordance with the NIH guidelines for Care and Use of Laboratory Animals; all procedures and protocols were approved by the Institutional Animal Care and Use Committee at Soochow University (#202107A0121). Patents A patent application on a method for screening of SLC1A5 inhibitors and mianserin’s use as antitumor agent has been filed with the China National Intellectual Property Administration (Application number: CN202111328929.3).

Competing interests

The authors declare no potential conflicts of interest during the study and preparation of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 509 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Zhou, Z., Lu, F. et al. Antitumor activity of mianserin (a tetracyclic antidepressant) primarily driven by the inhibition of SLC1A5-mediated glutamine transport. Invest New Drugs 40, 977–989 (2022). https://doi.org/10.1007/s10637-022-01284-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-022-01284-w

Keywords

Navigation