Skip to main content

Advertisement

Log in

Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To compare diagnostic performance and structure–function correlations of multifocal electroretinogram (mfERG), full-field flash ERG (ff-ERG) photopic negative response (PhNR) and transient pattern-reversal ERG (PERG) in a non-human primate (NHP) model of experimental glaucoma (EG).

Methods

At baseline and after induction of chronic unilateral IOP elevation, 43 NHP had alternating weekly recordings of retinal nerve fiber layer thickness (RNFLT) by spectral domain OCT (Spectralis) and retinal function by mfERG (7F slow-sequence stimulus, VERIS), ff-ERG (red 0.42 log cd-s/m2 flashes on blue 30 scotopic cd/m2 background, LKC UTAS-E3000), and PERG (0.8° checks, 99% contrast, 100 cd/m2 mean, 5 reversals/s, VERIS). All NHP were followed at least until HRT-confirmed optic nerve head posterior deformation, most to later stages. mfERG responses were filtered into low- and high-frequency components (LFC, HFC, >75 Hz). Peak-to-trough amplitudes of LFC features (N1, P1, N2) and HFC RMS amplitudes were measured and ratios calculated for HFC:P1 and N2:P1. ff-ERG parameters included A-wave (at 10 ms), B-wave (trough-to-peak) and PhNR (baseline-to-trough) amplitudes as well as PhNR:B-wave ratio. PERG parameters included P50 and N95 amplitudes as well as N95:P50 ratio and N95 slope. Diagnostic performance of retinal function parameters was compared using the area under the receiver operating characteristic curve (A-ROC) to discriminate between EG and control eyes. Correlations to RNFLT were compared using Steiger’s test.

Results

Study duration was 15 ± 8 months. At final follow-up, structural damage in EG eyes measured by RNFLT ranged from 9% above baseline (BL) to 58% below BL; 29/43 EG eyes (67%) and 0/43 of the fellow control eyes exhibited significant (>7%) loss of RNFLT from BL. Using raw parameter values, the largest A-ROC findings for mfERG were: HFC (0.82) and HFC:P1 (0.90); for ff-ERG: PhNR (0.90) and PhNR:B-wave (0.88) and for PERG: P50 (0.64) and N95 (0.61). A-ROC increased when data were expressed as % change from BL, but the pattern of results persisted. At 95% specificity, the diagnostic sensitivity of mfERG HFC:P1 ratio was best, followed by PhNR and PERG. The correlation to RNFLT was stronger for mfERG HFC (R = 0.65) than for PhNR (R = 0.59) or PERG N95 (R = 0.36), (p = 0.20, p = 0.0006, respectively). The PhNR flagged a few EG eyes at the final time point that had not been flagged by mfERG HFC or PERG.

Conclusions

Diagnostic performance and structure–function correlation were strongest for mfERG HFC as compared with ff-ERG PhNR or PERG in NHP EG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267. doi:10.1136/bjo.2005.081224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013

    Article  PubMed  Google Scholar 

  3. Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet 363(9422):1711–1720. doi:10.1016/S0140-6736(04)16257-0

    Article  PubMed  Google Scholar 

  4. Quigley HA (2011) Glaucoma. Lancet 377(9774):1367–1377. doi:10.1016/S0140-6736(10)61423-7

    Article  PubMed  Google Scholar 

  5. Burgoyne C (2015) The morphological difference between glaucoma and other optic neuropathies. J Neuroophthalmol 35(Suppl 1):S8–S21. doi:10.1097/WNO.0000000000000289

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fortune B, Reynaud J, Hardin C, Wang L, Sigal IA, Burgoyne CF (2016) Experimental glaucoma causes optic nerve head neural rim tissue compression: a potentially important mechanism of axon injury. Invest Ophthalmol Vis Sci 57(10):4403–4411. doi:10.1167/iovs.16-20000

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chauhan BC, O’Leary N, Almobarak FA, Reis AS, Yang H, Sharpe GP, Hutchison DM, Nicolela MT, Burgoyne CF (2013) Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120(3):535–543. doi:10.1016/j.ophtha.2012.09.055

    Article  PubMed  Google Scholar 

  8. Gardiner SK, Boey PY, Yang H, Fortune B, Burgoyne CF, Demirel S (2015) Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area. Invest Ophthalmol Vis Sci 56(11):6886–6891. doi:10.1167/iovs.15-16701

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blumberg DM, De Moraes CG, Liebmann JM, Garg R, Chen C, Theventhiran A, Hood DC (2016) Technology and the glaucoma suspect. Invest Ophthalmol Vis Sci 57(9):OCT80–OCT85. doi:10.1167/iovs.15-18931

    Article  PubMed  Google Scholar 

  10. De Moraes CG, Liebmann JM, Ritch R, Hood DC (2012) Understanding disparities among diagnostic technologies in glaucoma. Arch Ophthalmol 130(7):833–840. doi:10.1001/archophthalmol.2012.786

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raza AS, Zhang X, De Moraes CG, Reisman CA, Liebmann JM, Ritch R, Hood DC (2014) Improving glaucoma detection using spatially correspondent clusters of damage and by combining standard automated perimetry and optical coherence tomography. Invest Ophthalmol Vis Sci 55(1):612–624. doi:10.1167/iovs.13-12351

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Moraes CG, Liebmann JM, Ritch R, Hood DC (2012) Clinical use of multifocal visual-evoked potentials in a glaucoma practice: a prospective study. Doc Ophthalmol 125(1):1–9. doi:10.1007/s10633-012-9324-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11(Suppl 2):S41–S49

    PubMed  Google Scholar 

  14. Bach M, Poloschek CM (2013) Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res 353(2):287–296. doi:10.1007/s00441-013-1598-6

    Article  PubMed  Google Scholar 

  15. Wilsey LJ, Fortune B (2016) Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol 27(2):118–124. doi:10.1097/ICU.0000000000000241

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harwerth RS, Crawford ML, Frishman LJ, Viswanathan S, Smith EL 3rd, Carter-Dawson L (2002) Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res 21(1):91–125

    Article  PubMed  Google Scholar 

  17. Rangaswamy NV, Zhou W, Harwerth RS, Frishman LJ (2006) Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest Ophthalmol Vis Sci 47(2):753–767

    Article  PubMed  PubMed Central  Google Scholar 

  18. Porciatti V (2015) Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res 141:164–170. doi:10.1016/j.exer.2015.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561

    Article  CAS  PubMed  Google Scholar 

  20. Hood DC (2000) Assessing retinal function with the multifocal technique. Prog Retin Eye Res 19(5):607–646

    Article  CAS  PubMed  Google Scholar 

  21. Ventura LM, Porciatti V (2006) Pattern electroretinogram in glaucoma. Curr Opin Ophthalmol 17(2):196–202. doi:10.1097/01.icu.0000193082.44938.3c

    Article  PubMed  PubMed Central  Google Scholar 

  22. Machida S (2012) Clinical applications of the photopic negative response to optic nerve and retinal diseases. J Ophthalmol 2012:397178. doi:10.1155/2012/397178

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kaneko M, Machida S, Hoshi Y, Kurosaka D (2015) Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr Eye Res 40(1):77–86. doi:10.3109/02713683.2014.915575

    Article  CAS  PubMed  Google Scholar 

  24. Preiser D, Lagreze WA, Bach M, Poloschek CM (2013) Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci 54(2):1182–1191. doi:10.1167/iovs.12-11201

    Article  PubMed  Google Scholar 

  25. Cull GA, Reynaud J, Wang L, Cioffi GA, Burgoyne CF, Fortune B (2012) Relationship between orbital optic nerve axon counts and retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(12):7766–7773. doi:10.1167/iovs.12-10752

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cull GA, Reynaud J, Wang L, Cioffi GA, Burgoyne CF, Fortune B (2014) Erratum in: “Relationship between orbital optic nerve axon counts and retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography”. Invest Ophthalmol Vis Sci 55(4):2619–2620. doi:10.1167/iovs.12-10752a

    Article  Google Scholar 

  27. Fortune B, Hardin C, Reynaud J, Cull G, Yang H, Wang L, Burgoyne CF (2016) Comparing optic nerve head rim width, rim area, and peripapillary retinal nerve fiber layer thickness to axon count in experimental glaucoma. Invest Ophthalmol Vis Sci 57(9):OCT404–OCT412. doi:10.1167/iovs.15-18667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fortune B, Cull GA, Burgoyne CF (2008) Relative course of retinal nerve fiber layer birefringence and thickness and retinal function changes after optic nerve transection. Invest Ophthalmol Vis Sci 49(10):4444–4452. doi:10.1167/iovs.08-2255

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fortune B, Burgoyne CF, Cull GA, Reynaud J, Wang L (2012) Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma. Invest Ophthalmol Vis Sci 53(7):3939–3950. doi:10.1167/iovs.12-9979

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fortune B, Cull G, Reynaud J, Wang L, Burgoyne CF (2015) Relating retinal ganglion cell function and retinal nerve fiber layer (RNFL) retardance to progressive loss of RNFL thickness and optic nerve axons in experimental glaucoma. Invest Ophthalmol Vis Sci 56(6):3936–3944. doi:10.1167/iovs.15-16548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilsey LJ, Reynaud J, Cull G, Burgoyne CF, Fortune B (2016) Macular structure and function in nonhuman primate experimental glaucoma. Invest Ophthalmol Vis Sci 57(4):1892–1900. doi:10.1167/iovs.15-18119

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fortune B, Burgoyne CF, Cull G, Reynaud J, Wang L (2013) Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma. Invest Ophthalmol Vis Sci 54(8):5653–5661. doi:10.1167/iovs.13-12219

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fortune B, Reynaud J, Wang L, Burgoyne CF (2013) Does optic nerve head surface topography change prior to loss of retinal nerve fiber layer thickness: a test of the site of injury hypothesis in experimental glaucoma. PLoS ONE 8(10):e77831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fortune B, Wang L, Bui BV, Burgoyne CF, Cioffi GA (2005) Idiopathic bilateral optic atrophy in the rhesus macaque. Invest Ophthalmol Vis Sci 46(11):3943–3956. doi:10.1167/iovs.04-1160

    Article  PubMed  Google Scholar 

  35. Johnson MA, Drum BA, Quigley HA, Sanchez RM, Dunkelberger GR (1989) Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 30(5):897–907

    CAS  PubMed  Google Scholar 

  36. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40(6):1124–1136

    CAS  PubMed  Google Scholar 

  37. Frishman LJ, Saszik S, Harwerth RS, Viswanathan S, Li Y, Smith EL 3rd, Robson JG, Barnes G (2000) Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc Ophthalmol 100(2–3):231–251

    Article  CAS  PubMed  Google Scholar 

  38. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810

    CAS  PubMed  Google Scholar 

  39. Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45(10):3827–3837

    Article  PubMed  Google Scholar 

  40. Nork TM, Kim CB, Heatley GA, Kaufman PL, Lucarelli MJ, Levin LA, Ver Hoeve JN (2010) Serial multifocal electroretinograms during long-term elevation and reduction of intraocular pressure in non-human primates. Doc Ophthalmol 120(3):273–289. doi:10.1007/s10633-010-9231-4

    Article  PubMed  PubMed Central  Google Scholar 

  41. Luo X, Patel NB, Harwerth RS, Frishman LJ (2011) Loss of the low-frequency component of the global-flash multifocal electroretinogram in primate eyes with experimental glaucoma. Invest Ophthalmol Vis Sci 52(6):3792–3804. doi:10.1167/iovs.10-6667

    Article  PubMed  PubMed Central  Google Scholar 

  42. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42(2):514–522

    CAS  PubMed  Google Scholar 

  43. Rangaswamy NV, Shirato S, Kaneko M, Digby BI, Robson JG, Frishman LJ (2007) Effects of spectral characteristics of Ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Invest Ophthalmol Vis Sci 48(10):4818–4828. doi:10.1167/iovs.07-0218

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hood DC, Xu L, Thienprasiddhi P, Greenstein VC, Odel JG, Grippo TM, Liebmann JM, Ritch R (2005) The pattern electroretinogram in glaucoma patients with confirmed visual field deficits. Invest Ophthalmol Vis Sci 46(7):2411–2418. doi:10.1167/iovs.05-0238

    Article  PubMed  Google Scholar 

  45. Bach M, Holder GE (1996) Check size tuning of the pattern electroretingoram: a reappraisal. Doc Ophthalmol 92(3):193–202

    Article  PubMed  Google Scholar 

  46. Bode SF, Jehle T, Bach M (2011) Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci 52(7):4300–4306. doi:10.1167/iovs.10-6381

    Article  PubMed  Google Scholar 

  47. Banitt MR, Ventura LM, Feuer WJ, Savatovsky E, Luna G, Shif O, Bosse B, Porciatti V (2013) Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci 54(3):2346–2352. doi:10.1167/iovs.12-11026

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bach M, Ramharter-Sereinig A (2013) Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols. Doc Ophthalmol 127(3):227–238. doi:10.1007/s10633-013-9412-z

    Article  PubMed  Google Scholar 

  49. Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41(6):1570–1579

    CAS  PubMed  Google Scholar 

  50. Fortune B, Johnson CA, Cioffi GA (2001) The topographic relationship between multifocal electroretinographic and behavioral perimetric measures of function in glaucoma. Optom Vis Sci 78(4):206–214

    Article  CAS  PubMed  Google Scholar 

  51. Fortune B, Bearse MA Jr, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43(8):2638–2647

    PubMed  Google Scholar 

  52. Stiefelmeyer S, Neubauer AS, Berninger T, Arden GB, Rudolph G (2004) The multifocal pattern electroretinogram in glaucoma. Vis Res 44(1):103–112

    Article  PubMed  Google Scholar 

  53. Harrison WW, Viswanathan S, Malinovsky VE (2006) Multifocal pattern electroretinogram: cellular origins and clinical implications. Optom Vis Sci 83(7):473–485. doi:10.1097/01.opx.0000218319.61580.a5

    Article  PubMed  Google Scholar 

  54. Ledolter AA, Monhart M, Schoetzau A, Todorova MG, Palmowski-Wolfe AM (2015) Structural and functional changes in glaucoma: comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields. Doc Ophthalmol 130(3):197–209. doi:10.1007/s10633-015-9482-1

    Article  PubMed  Google Scholar 

  55. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43(5):1673–1685

    PubMed  Google Scholar 

  56. Luo X, Frishman LJ (2011) Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci 52(12):8571–8584. doi:10.1167/iovs.11-8376

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kato F, Miura G, Shirato S, Sato E, Yamamoto S (2015) Correlation between N2 amplitude of multifocal ERGs and retinal sensitivity and retinal nerve fiber layer thickness in glaucomatous eyes. Doc Ophthalmol 131(3):197–206. doi:10.1007/s10633-015-9519-5

    Article  PubMed  Google Scholar 

  58. Golemez H, Yildirim N, Ozer A (2016) Is multifocal electroretinography an early predictor of glaucoma? Doc Ophthalmol 132(1):27–37. doi:10.1007/s10633-016-9524-3

    Article  PubMed  Google Scholar 

  59. Colotto A, Falsini B, Salgarello T, Iarossi G, Galan ME, Scullica L (2000) Photopic negative response of the human ERG: losses associated with glaucomatous damage. Invest Ophthalmol Vis Sci 41(8):2205–2211

    CAS  PubMed  Google Scholar 

  60. North RV, Jones AL, Drasdo N, Wild JM, Morgan JE (2010) Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 51(2):1216–1222. doi:10.1167/iovs.09-3409

    Article  PubMed  Google Scholar 

  61. Niyadurupola N, Luu CD, Nguyen DQ, Geddes K, Tan GX, Wong CC, Tran T, Coote MA, Crowston JG (2013) Intraocular pressure lowering is associated with an increase in the photopic negative response (PhNR) amplitude in glaucoma and ocular hypertensive eyes. Invest Ophthalmol Vis Sci 54(3):1913–1919. doi:10.1167/iovs.12-10869

    Article  PubMed  Google Scholar 

  62. Machida S, Kaneko M, Kurosaka D (2015) Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Curr Eye Res 40(4):439–449. doi:10.3109/02713683.2014.922196

    Article  CAS  PubMed  Google Scholar 

  63. Wu Z, Hadoux X, Fan Gaskin JC, Sarossy MG, Crowston JG (2016) Measuring the photopic negative response: viability of skin electrodes and variability across disease severities in glaucoma. Transl Vis Sci Technol 5(2):13. doi:10.1167/tvst.5.2.13

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kirkiewicz M, Lubinski W, Penkala K (2016) Photopic negative response of full-field electroretinography in patients with different stages of glaucomatous optic neuropathy. Doc Ophthalmol 132(1):57–65. doi:10.1007/s10633-016-9528-z

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chrysostomou V, Crowston JG (2013) The photopic negative response of the mouse electroretinogram: reduction by acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 54(7):4691–4697. doi:10.1167/iovs.13-12415

    Article  PubMed  Google Scholar 

  66. Liu Y, McDowell CM, Zhang Z, Tebow HE, Wordinger RJ, Clark AF (2014) Monitoring retinal morphologic and functional changes in mice following optic nerve crush. Invest Ophthalmol Vis Sci 55(6):3766–3774. doi:10.1167/iovs.14-13895

    Article  PubMed  Google Scholar 

  67. Machida S, Toba Y, Ohtaki A, Gotoh Y, Kaneko M, Kurosaka D (2008) Photopic negative response of focal electoretinograms in glaucomatous eyes. Invest Ophthalmol Vis Sci 49(12):5636–5644. doi:10.1167/iovs.08-1946

    Article  PubMed  Google Scholar 

  68. Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci 49(5):2201–2207. doi:10.1167/iovs.07-0887

    Article  PubMed  Google Scholar 

  69. Machida S, Tamada K, Oikawa T, Gotoh Y, Nishimura T, Kaneko M, Kurosaka D (2011) Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. J Ophthalmol. doi:10.1155/2011/564131

    PubMed  Google Scholar 

  70. Fortune B, Bui BV, Cull G, Wang L, Cioffi GA (2004) Inter-ocular and inter-session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates. Exp Eye Res 78(1):83–93

    Article  CAS  PubMed  Google Scholar 

  71. Mortlock KE, Binns AM, Aldebasi YH, North RV (2010) Inter-subject, inter-ocular and inter-session repeatability of the photopic negative response of the electroretinogram recorded using DTL and skin electrodes. Doc Ophthalmol 121(2):123–134. doi:10.1007/s10633-010-9239-9

    Article  PubMed  Google Scholar 

  72. Wu Z, Hadoux X, Hui F, Sarossy MG, Crowston JG (2016) Photopic negative response obtained using a handheld electroretinogram device: determining the optimal measure and repeatability. Transl Vis Sci Technol 5(4):8. doi:10.1167/tvst.5.4.8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Galen Williams, Luke Reyes, Karin Novitsky and Juan Reynaud for their expert technical assistance during data collection and processing.

Funding

National Institutes of Health, National Eye Institute provided financial support in the form of research grant funding: R01-EY019327 (BF), R01-EY011610 (CFB); Legacy Good Samaritan Foundation provided financial support in the form of research funding. The sponsors had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Fortune.

Ethics declarations

Informed consent

As this article does not contain any studies with human participants performed directly by any of the authors, the concept of informed consent is not applicable.

Conflict of interest

Claude F. Burgoyne is a consultant to and receives unrestricted research support from Heidelberg Engineering, GmbH. All other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Statement on Human Rights

This article does not contain any studies with human participants performed by any of the authors.

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experimental methods and care procedures were approved and monitored by the Institutional Animal Care and Use Committee (IACUC) at Legacy Health (USDA license 92-R-0002 and OLAW assurance A3234-01) and carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the Association for Research in Vision and Ophthalmology’s Statement for the Use of Animals in Ophthalmic and Vision Research.

Appendix

Appendix

Measurement of PhNR amplitude has been done using a variety of methods in different laboratories. These various approaches include measuring the voltage difference between the pre-stimulus baseline or the peak of the B-wave and either the trough (minima) following the B-wave or a fixed post-stimulus criterion time [36, 67, 68, 7072]. Previously, we had determined that PhNR amplitude measurements from the peak of the B-wave to a fixed criterion time of 70 ms provided the best reproducibility for the flash intensity used in the current study. However, the larger sample size and inclusion of glaucomatous eyes available for the current study presented an opportunity to re-evaluate this question. Therefore, we compared diagnostic performance of 8 different derivations of PhNR amplitude and selected the best performing method to use in the main part of the study for comparison to mfERG and PERG parameters. The eight PhNR amplitude derivations evaluated were measured as follows: (1) from B-wave peak to a criterion time of 60 ms; (2) 65 ms; (3) 70 ms; (4) from the ERG baseline to a criterion time of 60 ms; (5) 65 ms; (6) 70 ms; (7) from the B-wave peak to the PhNR trough; (8) from the ERG baseline to the PhNR trough. The results of this comparison demonstrated unequivocally that the best diagnostic performance was obtained using method 8: from the ERG baseline to the PhNR trough (see Tables 5, 6). Therefore, PhNR amplitude measurements obtained using that method were included in the main study for comparison to other parameters of the photopic full-field flash ERG, the mfERG and PERG.

Table 5 Diagnostic sensitivity across various PhNR amplitude derivations, raw values
Table 6 Diagnostic sensitivity across various PhNR amplitude derivations, change from baseline

Although diagnostic performance was clearly better for the baseline-to-trough PhNR amplitude derivation, it was also useful to compare repeat reliability across these eight approaches. To this end, we calculated the coefficient of variation (CoV) as the standard deviation of pre-laser baseline measurements divided by the mean of the same measurements for each eye. Alternatively, since the average value of a given parameter in healthy eyes might not be an adequate representation of its dynamic range, we also scaled the median standard deviation of baseline measurements by the median effect size (i.e., the difference between the amplitude in the glaucomatous eye and the amplitude in the fellow control eye at the final time point). The results revealed that the median value for the CoV was always approximately half as large for PhNR amplitude measurements made from the B-wave peak as compared with those made from the ERG baseline (17 vs. 30%, on average, respectively). However, the inverse was true when intersession variation was scaled by the effect size instead of by the average magnitude of each parameter: By this metric, the PhNR amplitude measurements taken from the B-wave peak were about twice as variable as those made from the ERG baseline (65 vs. 27%, on average, respectively). Ironically, this result for repeat reliability did not manifest as better diagnostic performance of PhNR measurements made from the ERG baseline compared to those made from the B-wave peak for longitudinal (baseline normalized) data as compared with strictly cross-sectional data (compare Tables 5, 6). In any case, the method of PhNR amplitude derivation based on ERG baseline-to-trough had the best diagnostic performance and among the best repeat reliability by either metric (median CoV = 21%; intersession variation scaled by effect size = 29%). Thus it was clearly the measurement of choice for the comparison to other ERG parameters in the main portion of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilsey, L., Gowrisankaran, S., Cull, G. et al. Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc Ophthalmol 134, 111–128 (2017). https://doi.org/10.1007/s10633-017-9578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-017-9578-x

Keywords

Navigation