Skip to main content
Log in

On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In a series of papers (Solodov and Svaiter in J Convex Anal 6(1):59–70, 1999; Set-Valued Anal 7(4):323–345, 1999; Numer Funct Anal Optim 22(7–8):1013–1035, 2001) Solodov and Svaiter introduced new inexact variants of the proximal point method with relative error tolerances. Point-wise and ergodic iteration-complexity bounds for one of these methods, namely the hybrid proximal extragradient method (1999) were established by Monteiro and Svaiter (SIAM J Optim 20(6):2755–2787, 2010). Here, we extend these results to a more general framework, by establishing point-wise and ergodic iteration-complexity bounds for the inexact proximal point method studied by Solodov and Svaiter (2001). Using this framework we derive global convergence results and iteration-complexity bounds for a family of projective splitting methods for solving monotone inclusion problems, which generalize the projective splitting methods introduced and studied by Eckstein and Svaiter (SIAM J Control Optim 48(2):787–811, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alotaibi, A., Combettes, P.L., Shahzad, N.: Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn–Tucker set. SIAM J. Optim. 24(4), 2076–2095 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, M.M., Monteiro, R.D.C., Svaiter, B.F.: Regularized HPE-type methods for solving monotone inclusions with improved pointwise iteration-complexity bounds. SIAM J. Optim. 26(4), 2730–2743 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, M.M., Eckstein, J., Geremia, M.J.G.: Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms. Comput. Optim. Appl. 75(2), 389–422 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ansari, Q.H., Babu, F., Yao, J.C.: Regularization of proximal point algorithms in Hadamard manifolds. Fixed Point Theory Appl. 21(1), 25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L., Reich, S.: The asymptotic behavior of the composition of two resolvents. Nonlinear Anal. 60(2), 283–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L., Kruk, S.G.: Extrapolation algorithm for affine-convex feasibility problems. Numer. Algorithms 41(3), 239–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H.: A note on the paper by Eckstein and Svaiter on General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48(4), 2513–2515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5(2), 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burachik, R.S., Svaiter, B.F.: $\varepsilon $-enlargements of maximal monotone operators in Banach spaces. Set-Valued Anal. 7(2), 117–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burachik, R.S., Sagastizábal, C.A., Scheimberg, S.: An inexact method of partial inverses and a parallel bundle method. Optim. Methods Softw. 21(3), 385–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ceng, L.C., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal method with auxiliary variational inequality for vector optimization. J. Optim. Theory Appl. 146(2), 267–303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, S.S., Wen, C.F., Yao, J.C.: Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces. Optimization 67(8), 1183–1196 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. 168(1–2), 645–672 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program. 111(1–2), 173–199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48(2), 787–811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eckstein, J., Silva, P.J.: A practical relative error criterion for augmented Lagrangians. Math. Program. 141(1–2), 319–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eckstein, J.: A simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multi-block alternating direction method of multipliers. J. Optim. Theory Appl. 173(1), 155–182 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangians: Application to the Numerical Solution of Boundary Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)

    Chapter  Google Scholar 

  20. Glowinski, R., Osher, S.J., Yin, W. (eds.): Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Cham (2017)

    Google Scholar 

  21. Johnstone, P.R., Eckstein, J.: Convergence rates for projective splitting. SIAM J. Optim. 29(3), 1931–1957 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order augmented lagrangian methods for convex programming. Math. Program. 155(1–2), 511–547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Machado, P.M.: On the complexity of the projective splitting and Spingarn’s methods for the sum of two maximal monotone operators. J. Optim. Theory Appl. 178(1), 153–190 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Machado, M.P.: Projective method of multipliers for linearly constrained convex minimization. Comput. Optim. Appl. 73(1), 237–273 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moudafi, A.: On the convergence of the forward-backward algorithm for null-point problems. J. Nonlinear Var. Anal. 2(3), 263–268 (2018)

    MATH  Google Scholar 

  27. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 4, 154–158 (1970)

    MathSciNet  MATH  Google Scholar 

  28. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20(6), 2755–2787 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Monteiro, R.D.C., Svaiter, B.F.: Complexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization problems. SIAM J. Optim. 21(4), 1688–1720 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of a newton proximal extragradient method for monotone variational inequalities and inclusion problems. SIAM J. Optim. 22(3), 914–935 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: A first-order block-decomposition method for solving two-easy-block structured semidefinite programs. Math. Program. Computat. 6(2), 103–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Monteiro, R.D.C., Sicre, M.R., Svaiter, B.F.: A hybrid proximal extragradient self-concordant primal barrier method for monotone variational inequalities. SIAM J. Optim. 25(4), 1965–1996 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Monteiro, R.D.C., Sim, C.-K.: Complexity of the relaxed Peaceman–Rachford splitting method for the sum of two maximal strongly monotone operators. Comput. Optim. Appl. 70(3), 763–790 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Otero, R.G., Iusem, A.N.: Proximal methods in reflexive Banach spaces without monotonicity. J. Math. Anal. Appl. 330(1), 433–450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 140, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sicre, M.R., Svaiter, B.F.: Interior hybrid proximal extragradient methods for the linear monotone complementarity problem. Optimization 64(9), 1957–1982 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sicre, M.R., Svaiter, B.F.: An $\cal{O}(1/k^{3/2})$ hybrid proximal extragradient primal-dual interior point method for non-linear monotone complementarity problems. Comput. Appl. Math. 37(2), 1847–1876 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Simons, S.: Minimax and Monotonicity. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  43. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22(7–8), 1013–1035 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Romero Sicre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of this author was supported by CNPq and FAPESB: 022/2009 - PPP.

Appendix

Appendix

The next result is a technical lemma borrowed from [16]. Given \(L\in M(n)\), we define the associated linear mapping \(L:\mathcal {H}^n\rightarrow \mathcal {H}^n\) via

$$\begin{aligned} Lu = L(u_1,\ldots ,u_n) = (v_1,\ldots ,v_n)\ \text{ with } v_i = \sum _{j=1}^n l_{ij} u_j \end{aligned}$$
(65)

and \(l_{ij}\) denoting the elements of L for \(i,j=1,\ldots ,n\).

Lemma 3

LetLbe any real\(n\times n\)matrix. For all\(u=(u_1,\ldots ,u_n)\in \mathcal {H}^n\),

  1. 1.

    \(\Vert Lu\Vert \le \Vert L\Vert \Vert u\Vert \),

  2. 2.

    \(\langle {u},{Lu}\rangle \ge \kappa (L)\Vert u\Vert ^2\),

  3. 3.

    \(\kappa (L)\le \Vert L\Vert \),

whereLuis defined by (65).

Proof

For the proof of items (1) and (2), see [16, Lemma 4.1]. Item (3) follows trivially from items (1) and (2) and Cauchy-Schwartz inequality. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sicre, M.R. On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems. Comput Optim Appl 76, 991–1019 (2020). https://doi.org/10.1007/s10589-020-00200-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00200-3

Keywords

Navigation