Skip to main content
Log in

A first-order block-decomposition method for solving two-easy-block structured semidefinite programs

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

In this paper, we consider a first-order block-decomposition method for minimizing the sum of a convex differentiable function with Lipschitz continuous gradient, and two other proper closed convex (possibly, nonsmooth) functions with easily computable resolvents. The method presented contains two important ingredients from a computational point of view, namely: an adaptive choice of stepsize for performing an extragradient step; and the use of a scaling factor to balance the blocks. We then specialize the method to the context of conic semidefinite programming (SDP) problems consisting of two easy blocks of constraints. Without putting them in standard form, we show that four important classes of graph-related conic SDP problems automatically possess the above two-easy-block structure, namely: SDPs for \(\theta \)-functions and \(\theta _{+}\)-functions of graph stable set problems, and SDP relaxations of binary integer quadratic and frequency assignment problems. Finally, we present computational results on the aforementioned classes of SDPs showing that our method outperforms the three most competitive codes for large-scale conic semidefinite programs, namely: the boundary point (BP) method introduced by Povh et al., a Newton-CG augmented Lagrangian method, called SDPNAL, by Zhao et al., and a variant of the BP method, called the SPDAD method, by Wen et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Available at http://math.sjtu.edu.cn/faculty/zw2109/code/SDPAD-release-beta2.zip.

  2. Downloaded in 2010 at http://www.math.nus.edu.sg/~mattohkc/SDPNAL.html.

References

  1. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set Valued Anal. 5, 159–180 (1997). doi:10.1023/A:1008615624787

    Article  MATH  MathSciNet  Google Scholar 

  2. Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set Valued Anal. 10, 297–316 (2002). doi:10.1023/A:1020639314056

    Article  MATH  MathSciNet  Google Scholar 

  3. Burer, S., Monteiro, R.D.C., Zhang, Y.: A computational study of a gradient-based log-barrier algorithm for a class of large-scale SDPs. Math. Program. 95, 359–379 (2003). doi:10.1007/s10107-002-0353-7

    Article  MATH  MathSciNet  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011). doi:10.1007/s10851-010-0251-1

    Article  MATH  MathSciNet  Google Scholar 

  5. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles (2002). doi:10.1007/s101070100263

  6. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976). doi:10.1016/0898-1221(76)90003-1

    Article  MATH  Google Scholar 

  7. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par penalisation-dualité, d’une classe de problèmes de dirichlet non linéaires. RAIRO Anal. Numér. 2, 41–76 (1975)

    MathSciNet  Google Scholar 

  8. Lemaréchal, C.: Extensions diverses des méthodes de gradient et applications. Tech. rep., Thèse d’Etat, Université de Paris IX (1980)

  9. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed mr imaging using total variation and wavelets. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8 (2008). doi:10.1109/CVPR.2008.4587391

  10. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009). doi:10.1137/070704575

    Article  MATH  MathSciNet  Google Scholar 

  11. Monteiro, R.C.D., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013). doi:10.1137/110849468

    Article  MATH  MathSciNet  Google Scholar 

  12. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems. Comput. Optim. Appl., pp. 1–25 (2013). doi:10.1007/s10589-013-9590-3

  13. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20(6), 2755–2787 (2010). doi:10.1137/090753127

    Article  MATH  MathSciNet  Google Scholar 

  14. Monteiro, R.D.C., Svaiter, B.F.: Complexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization problems. SIAM J. Optim. 21(4), 1688–1720 (2011). doi:10.1137/100801652

    Article  MATH  MathSciNet  Google Scholar 

  15. Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefinite programs. Computing 78, 277–286 (2006). doi:10.1007/s00607-006-0182-2

    Article  MATH  MathSciNet  Google Scholar 

  16. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  17. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  18. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set Valued Anal. 7(4), 323–345 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Svaiter, B.F.: A family of enlargements of maximal monotone operators. Set Valued Anal. 8, 311–328 (2000). doi:10.1023/A:1026555124541

    Article  MATH  MathSciNet  Google Scholar 

  20. Toh, K.C., Todd, M., Tütüncü, R.H.: Sdpt3—a matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  21. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented lagrangian methods for semidefinite programming. Math. Program. Comput. 2, 203–230 (2010). doi:10.1007/s12532-010-0017-1

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhao, X.Y., Sun, D., Toh, K.C.: A Newton-CG augmented lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010). doi:10.1137/080718206

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Ortiz.

Additional information

The work of R. D. C. Monteiro was partially supported by NSF Grants CCF-0808863, CMMI-0900094 and CMMI- 1300221, and ONR Grant ONR N00014-11-1-0062.

The work of B. F. Svaiter was partially supported by CNPq Grants No. 303583/2008-8, 302962/2011-5, 480101/2008-6, 474944/2010-7, FAPERJ Grants E-26/102.821/2008, E-26/102.940/2011.

Appendix: Ergodic convergence results

Appendix: Ergodic convergence results

This appendix derives an ergodic iteration-complexity bound for Algorithm 1.

We start by stating the weak transportation formula for the \(\varepsilon \)-subdifferential.

Proposition 10.1

(Proposition 1.2.10 in [8]) Suppose that \(f:{\mathcal {Z}}\rightrightarrows {[-\infty ,\infty ]}\) is a closed proper convex function. Let \(z^{i},v^{i}\in {\mathcal {Z}}\) and \(\varepsilon _{i},\alpha _{i}\in {\mathbb {R}}_{+}\), for \(i=1,\ldots ,k\), be such that

$$\begin{aligned} v^{i}\in \partial _{\varepsilon _{i}}f(z^{i}),\quad i=1,\ldots ,k,\qquad \sum _{i=1}^{k}\alpha _{i}=1, \end{aligned}$$

and define

$$\begin{aligned}&z_{a}:=\sum _{i=1}^{k}\alpha _{i}z^{i},\quad v_{a}:=\sum _{i=1}^{k}\alpha _{i}v^{i}, \\&\varepsilon _{a}:=\sum _{i=1}^{k}\alpha _{i} [\varepsilon _{i}+\langle z^{i}-z_{a},v^{i}-v_{a}\rangle _{{\mathcal {Z}}}]= \sum _{i=1}^{k}\alpha _{i}[\varepsilon _{i}+\langle z^{i}-z_{a},v^{i}\rangle _{{\mathcal {Z}}}]. \end{aligned}$$

Then, \(\varepsilon _{a}\ge 0\) and \(v_{a}\in \partial _{\varepsilon _{a}}f(z_{a})\).

Theorem 10.2

Consider the sequences \(\{(x^{k},y^{k})\}, \{({\tilde{x}}^{k},{\tilde{y}}^{k})\}, \{(v_{1}^{k},v_{2}^{k})\}\) and \(\{\varepsilon _{k}\}\) generated by Algorithm 1, and the sequences \(\{c^{k}\}\) and \(\{d^{k}\}\) defined in (26). For every \(k\in {{\mathbb {N}}}\), define

$$\begin{aligned}&\varLambda _{k}:=\sum _{i=1}^{k}\lambda _{i}, \quad ({\tilde{x}}_{a}^{k},{\tilde{y}}_{a}^{k}):= \varLambda _{k}^{-1}\sum _{i=1}^{k}\lambda _{i} ({\tilde{x}}^{i},{\tilde{y}}^{i}),\\&(v_{1,a}^{k},v_{2,a}^{k}):=\varLambda _{k}^{-1} \sum _{i=1}^{k}\lambda _{i}(v_{1}^{k},v_{2}^{k}), \quad (c_{a}^{k},d_{a}^{k}):=\varLambda _{k}^{-1} \sum _{i=1}^{k}\lambda _{i}(c^{k},d^{k}) \end{aligned}$$

and

$$\begin{aligned}&\varepsilon _{k}^{1,a}:=\varLambda _{k}^{-1}\sum _{i=1}^{k} \lambda _{i}[\varepsilon _{k}+\langle {\theta ^{-1}c^{i}},{{\tilde{x}}^{i}-{\tilde{x}}_{a}^{k}}\rangle ], \quad \varepsilon _{k}^{2,a}:=\varLambda _{k}^{-1} \sum _{i=1}^{k}\lambda _{i}\langle {d^{i}},{{\tilde{y}}^{i} -{\tilde{y}}_{a}^{k}}\rangle , \nonumber \\&\quad \varepsilon _{k}^{a}:=\varepsilon _{k}^{1,a}+ \varepsilon _{k}^{2,a}. \end{aligned}$$
(61)

Then, for every \(k\in {{\mathbb {N}}}\),

$$\begin{aligned}&(\theta ^{-1}v_{1,a}^{k},v_{2,a}^{k})\in \left[ \partial _{\varepsilon _{k}^{1,a}} \left( f+h_{1}+\langle {{\tilde{y}}_{a}^{k}},{\cdot }\rangle \right) ({\tilde{x}}_{a}^{k})\right] \times \left[ \partial _{\varepsilon _{k}^{2,a}} \left( h_{2}^{*}-\langle {{\tilde{y}}_{a}^{k}},{\cdot }\rangle \right) ({\tilde{y}}_{a}^{k})\right] \nonumber \\&\quad \subseteq \partial _{\varepsilon _{k}^{a}} [{\mathcal L}(\cdot ,{\tilde{y}}_{a}^{k}) -{\mathcal L}({\tilde{x}}_{a}^{k},\cdot )] ({\tilde{x}}_{a}^{k},{\tilde{y}}_{a}^{k}) \end{aligned}$$
(62)

and

$$\begin{aligned}&\sqrt{\theta ^{-1}\Vert v_{1,a}^{k}\Vert ^{2}+\Vert v_{2,a}^{k} \Vert ^{2}}\le \max \left\{ \frac{1}{\sigma },\frac{\sqrt{\theta }L}{\sigma _{1}^{2}}\right\} \left( \frac{2\sqrt{\theta }}{k}\right) \sqrt{\theta ^{-1}d_{x,0}^{2}+d_{y,0}^{2}}, \end{aligned}$$
(63)
$$\begin{aligned}&\varepsilon _{k}^{a}\le \max \left\{ 1,\frac{\sqrt{\theta }L\sigma }{\sigma _{1}^{2}}\right\} \left[ \frac{8\sqrt{\theta }}{(1-\sigma _{1})k}\right] \left( \theta ^{-1}d_{x,0}^{2}+d_{y,0}^{2}\right) ,\qquad \end{aligned}$$
(64)

where \(d_{x,0}\) and \(d_{y,0}\) are defined in (31).

Proof

Let \(k\in {\mathbb {N}}\) be given. Note that by (35) and the definition of \(\langle {\cdot },{\cdot }\rangle _{\theta }\), we have

$$\begin{aligned} \varepsilon _{k}^{1,a}=\varLambda _{k}^{-1}\sum _{i=1}^{k} \lambda _{i}[\varepsilon _{k}+\langle {c^{i}},{{\tilde{x}}^{i} -{\tilde{x}}_{a}^{k}}\rangle _{\theta }],\quad \varepsilon _{k}^{2,a} =\varLambda _{k}^{-1}\sum _{i=1}^{k}\lambda _{i}\langle {d^{i}},{{\tilde{y}}^{i}-{\tilde{y}}_{a}^{k}}\rangle . \end{aligned}$$

Then, in view of Lemma 4.2 and Theorem 2.4 in [12], we have

$$\begin{aligned} \Vert F({\tilde{x}}_{a}^{k},{\tilde{y}}_{a}^{k}) +(c_{a}^{k},d_{a}^{k})\Vert _{\theta ,1}\le 2 \frac{d_{0}^{\theta }}{\varLambda _{k}}, \quad \varepsilon _{k}^{a}=\varepsilon _{k}^{1,a}+ \varepsilon _{k}^{2,a}\le \left( \frac{8\sigma }{1-\sigma _{1}}\right) \frac{(d_{0}^{\theta })^{2}}{\varLambda _{k}}. \end{aligned}$$

Hence, it follows from the above relations, Lemma 4.2(d) and the fact that \(\lambda _{k}\ge {\tilde{\lambda }}\), that

$$\begin{aligned} \Vert (v_{1,a}^{k},v_{2,a}^{k})\Vert _{\theta ,1}\!=\! \Vert F({\tilde{x}}_{a}^{k},{\tilde{y}}_{a}^{k}) \!+\!(c_{a}^{k},d_{a}^{k})\Vert _{\theta ,1}\!\le \! 2 \frac{d_{0}^{\theta }}{\varLambda _{k}}\!\le \! 2 \frac{d_{0}^{\theta }}{k{\tilde{\lambda }}}, \quad \varepsilon _{k}^{a}\!\le \!\left( \frac{8\sigma }{1-\sigma _{1}} \right) \frac{(d_{0}^{\theta })^{2}}{k{\tilde{\lambda }}}. \end{aligned}$$

Using the definition of \(\Vert (\cdot ,\cdot )\Vert _{\theta ,1}\), (30) and the definition of \({\tilde{\lambda }}\) in (22), we easily see that the above two inequalities imply (63) and (64). Now, (28), (29), (35), (61) and Proposition 10.1 imply that

$$\begin{aligned} \theta ^{-1}v_{1,a}^{k}\in \partial _{\varepsilon _{k}^{1,a}} (f+h_{1})({\tilde{x}}_{a}^{k})+{\tilde{y}}_{a}^{k},\quad v_{2,a}^{k}\in \partial _{\varepsilon _{k}^{2,a}}(h_{2}^{*}) ({\tilde{y}}_{a}^{k})-{\tilde{x}}_{a}^{k}. \end{aligned}$$

and hence that

$$\begin{aligned} \theta ^{-1}v_{1,a}^{k}\in (\partial _{x,\varepsilon _{k}^{1,a}}{\mathcal L})({\tilde{x}}_{a}^{k},{\tilde{y}}_{a}^{k}),\quad v_{2,a}^{k}\in (\partial _{y,\varepsilon _{k}^{2,a}}{\mathcal L})({\tilde{x}}_{a}^{k},{\tilde{y}}_{a}^{k}). \end{aligned}$$

The above four inclusions are easily seen to imply (62). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, R.D.C., Ortiz, C. & Svaiter, B.F. A first-order block-decomposition method for solving two-easy-block structured semidefinite programs. Math. Prog. Comp. 6, 103–150 (2014). https://doi.org/10.1007/s12532-013-0062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-013-0062-7

Keywords

Mathematics Subject Classification (2000)

Navigation