Skip to main content
Log in

A family of projective splitting methods for the sum of two maximal monotone operators

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

A splitting method for two monotone operators A and B is an algorithm that attempts to converge to a zero of the sum A + B by solving a sequence of subproblems, each of which involves only the operator A, or only the operator B. Prior algorithms of this type can all in essence be categorized into three main classes, the Douglas/Peaceman-Rachford class, the forward-backward class, and the little-used double-backward class. Through a certain “extended” solution set in a product space, we construct a fundamentally new class of splitting methods for pairs of general maximal monotone operators in Hilbert space. Our algorithms are essentially standard projection methods, using splitting decomposition to construct separators. We prove convergence through Fejér monotonicity techniques, but showing Fejér convergence of a different sequence to a different set than in earlier splitting methods. Our projective algorithms converge under more general conditions than prior splitting methods, allowing the proximal parameter to vary from iteration to iteration, and even from operator to operator, while retaining convergence for essentially arbitrary pairs of operators. The new projective splitting class also contains noteworthy preexisting methods either as conventional special cases or excluded boundary cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke H.H. and Borwein J.M. (1996). On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3): 367–426

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauschke H.H., Combettes P.L. and Reich S. (2005). The asymptotic behavior of the composition of two resolvents. Nonlin. Anal. 60(2): 283–301

    Article  MATH  MathSciNet  Google Scholar 

  3. Browder F.E. (1965). Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc. 118: 338–351

    Article  MATH  MathSciNet  Google Scholar 

  4. Browder F.E. (1968). Nonlinear maximal monotone operators in Banach space. Math. Ann. 175: 89–113

    Article  MATH  MathSciNet  Google Scholar 

  5. Cimmino G. (1938). Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Ric. Sci. Progr. Tecn. Econ. Naz. 1: 326–333

    Google Scholar 

  6. Combettes P.L. (2004). Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6): 475–504

    Article  MATH  MathSciNet  Google Scholar 

  7. Eckstein J. (1994). Some saddle-function splitting methods for convex programming. Optim. Meth. Softw. 4(1): 75–83

    Google Scholar 

  8. Eckstein J. and Bertsekas D.P. (1992). On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3): 293–318

    Article  MATH  MathSciNet  Google Scholar 

  9. Eckstein J. and Ferris M.C. (1998). Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control. INFORMS J. Comput. 10(2): 218–235

    Article  MATH  MathSciNet  Google Scholar 

  10. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems, chap. IX, pp. 299–340. North-Holland, Amsterdam (1983)

  11. Kaczmarz S. (1937). Angenäherte auflösung von systemen linearer gleichungen. Bull. Int. Acad. Pol. Sci. A. 1937: 355–357

    Google Scholar 

  12. Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control. 57(6), 1269–1271 (1993) (Translated from the German)

    Google Scholar 

  13. Lawrence J. and Spingarn J.E. (1987). On fixed points of nonexpansive piecewise isometric mappings. Proc. Lond. Math. Soc. 55(3): 605–624

    Article  MATH  MathSciNet  Google Scholar 

  14. Lions P.-L. (1978). Une méthode itérative de résolution d’une inéquation variationnelle. Isr. J. Math. 31(2): 204–208

    MATH  Google Scholar 

  15. Lions P.-L. and Mercier B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6): 964–979

    Article  MATH  MathSciNet  Google Scholar 

  16. Minty G.J. (1962). Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29: 341–346

    Article  MATH  MathSciNet  Google Scholar 

  17. Passty G.B. (1979). Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2): 383–390

    Article  MATH  MathSciNet  Google Scholar 

  18. Rockafellar R.T. (1970). On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149: 75–88

    Article  MATH  MathSciNet  Google Scholar 

  19. Solodov M.V. and Svaiter B.F. (1999). A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4): 323–345

    Article  MATH  MathSciNet  Google Scholar 

  20. Solodov M.V. and Svaiter B.F. (1999). A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1): 59–70

    MATH  MathSciNet  Google Scholar 

  21. Solodov M.V. and Svaiter B.F. (2000). Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. 87(1): 189–202

    MATH  MathSciNet  Google Scholar 

  22. Spingarn J.E. (1983). Partial inverse of a monotone operator. Appl. Math. Optim. 10(3): 247–265

    Article  MATH  MathSciNet  Google Scholar 

  23. Tseng P. (2000). A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2): 431–446

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Eckstein.

Additional information

Dedicated to Clovis Gonzaga on the occassion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckstein, J., Svaiter, B.F. A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program. 111, 173–199 (2008). https://doi.org/10.1007/s10107-006-0070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0070-8

Mathematics Subject Classification (2000)

Navigation