Skip to main content
Log in

Centromeres and kinetochores of Brassicaceae

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The centromere—the primary constriction of monocentric chromosomes—is essential for correct segregation of chromosomes during mitosis and meiosis. Centromeric DNA varies between different organisms in sequence composition and extension. The main components of centromeric and pericentromeric DNA of Brassicaceae species are centromeric satellite repeats. Centromeric DNA initiates assembly of the kinetochore, the large protein complex where the spindle fibers attach during nuclear division to pull sister chromatids apart. Kinetochore assembly is initiated by incorporation of the centromeric histone H3 cenH3 into centromeric nucleosomes. The spindle assembly checkpoint acts during mitosis and meiosis at centromeres and maintains genome stability by preventing chromosome segregation before all kinetochores are correctly attached to microtubules. The function of the spindle assembly checkpoint in plants is still poorly understood. Here, we review recent advances of studies on structure and functional importance of centromeric DNA of Brassicaceae, assembly and function of cenH3 in Arabidopsis thaliana and characterization of core SAC proteins of A. thaliana in comparison with non-plant homologues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC/C:

Anaphase promoting complex/cyclosome

BiFC:

Bimolecular fluorescence complementation

Bub:

Budding uninhibited by benzimidazole

cenH3:

Centromeric histone H3 variant

CPC:

Chromosomal passenger complex

GFP:

Green fluorescent protein

HFD:

Histone fold domain

HJURP:

Holliday junction recognizing protein

FLIP:

Fluorescence loss in photobleaching

FRAP:

Fluorescence recovery after photobleaching

KNL2:

Kinetochore null 2

LacI:

Lac repressor

LacO:

Lac operator

LTR:

Long terminal repeat

Mad:

Mitotic arrest defective

MMC:

Megaspore mother cell

SAC:

Spindle assembly checkpoint

Scm3:

Suppressor of chromosome missegregation 3

YPF:

Yellow fluorescent protein

References

  • Al-Shehbaz IA (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61:931–954

    Google Scholar 

  • Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 99(Suppl 4):16499–16506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA, Black BE, Foltz DR (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194:229–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bauwens S, Van Oostveldt P, Engler G, Van Montagu M (1991) Distribution of the rDNA and three classes of highly repetitive DNA in the chromatin of interphase nuclei of Arabidopsis thaliana. Chromosoma 101:41–48

    Article  CAS  PubMed  Google Scholar 

  • Berr A, Pecinka A, Meister A, Kreth G, Fuchs J, Blattner FR, Lysak MA, Schubert I (2006) Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. Plant J Cell Mol Biol 48:771–783

    Article  CAS  Google Scholar 

  • Black BE, Jansen LE, Maddox PS, Foltz DR, Desai AB, Shah JV, Cleveland DW (2007) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25:309–322

    Article  CAS  PubMed  Google Scholar 

  • Blower MD, Daigle T, Kaufman T, Karpen GH (2006) Drosophila CENP-A mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components. PLoS Genet 2:e110

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandes A, Thompson H, Dean C, Heslop-Harrison JS (1997) Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosom Res 5:238–246

  • Burgos-Rivera B, Dawe RK (2012) An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis. PLoS One 7:e51388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caillaud MC, Paganelli L, Lecomte P, Deslandes L, Quentin M, Pecrix Y, Le Bris M, Marfaing N, Abad P, Favery B (2009) Spindle assembly checkpoint protein dynamics reveal conserved and unsuspected roles in plant cell division. PLoS One 4:e6757

    Article  PubMed Central  PubMed  Google Scholar 

  • Capesius I (1983) Sequence of the cryptic satellite DNA from the plant Sinapis alba. Biochim Biophys Acta 739:276–280

    Article  CAS  Google Scholar 

  • Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 20:7037–7048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21:1712–1718

    Article  CAS  PubMed  Google Scholar 

  • Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11:1227–1238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demidov D, Schubert V, Kumke K, Weiß O, Karimi-Ashtiyani R, Buttlar R, Heckmann S, Waneer G, Dong Q, Han F, Houben A (2014) Anti-phosphorylated histone H2AThr120 - a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet. Genome Res. doi:10.1159/000360018

  • de Oliveira EA, Romeiro NC, Ribeiro Eda S, Santa-Catarina C, Oliveira AE, Silveira V, de Souza Filho GA, Venancio TM, Cruz MA (2012) Structural and functional characterization of the protein kinase Mps1 in Arabidopsis thaliana. PLoS One 7:e45707

    Article  PubMed Central  PubMed  Google Scholar 

  • De Rop V, Padeganeh A, Maddox PS (2012) CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 121:527–538

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding D, Muthuswamy S, Meier I (2012) Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. Plant Mol Biol 79:203–216

    Article  CAS  PubMed  Google Scholar 

  • Dong QH, Han FP (2012) Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. Plant J 71:800–809

    Article  CAS  PubMed  Google Scholar 

  • Elowe S (2011) Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 31:3085–3093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elowe S, Dulla K, Uldschmid A, Li X, Dou Z, Nigg EA (2010) Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci 123:84–94

    Article  CAS  PubMed  Google Scholar 

  • Fang G (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13:755–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16:5710–5718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Figueroa J, Saffrich R, Ansorge W, Valdivia MM (1998) Microinjection of antibodies to centromere protein CENP-A arrests cells in interphase but does not prevent mitosis. Chromosoma 107:397–405

    Article  CAS  PubMed  Google Scholar 

  • Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J Cell Mol Biol 13:867–876

    Article  CAS  Google Scholar 

  • Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, Jones GH (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100:367–376

    Article  CAS  PubMed  Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116

    Article  CAS  PubMed  Google Scholar 

  • Gartenberg M (2009) Heterochromatin and the cohesion of sister chromatids. Chromosom Res Int J Mol Supramol Evol Asp Chromosom Biol 17:229–238

    Article  CAS  Google Scholar 

  • Grellet F, Delcasso D, Panabieres F, Delseny M (1986) Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J Mol Biol 187:495–507

    Article  CAS  PubMed  Google Scholar 

  • Hall SE, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13:195–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hallden C, Bryngelsson T, Sall T, Gustafsson M (1987) Distribution and evolution of a tandemly repeated DNA-sequence in the family Brassicaceae. J Mol Evol 25:318–323

    Article  CAS  Google Scholar 

  • Hallden C, Svensson M, Bryngelsson T, Lind C (1990) Tandemly repeated DNA-sequences in Brassicaceae—a characterization of the sequences in Cochlearia-Officinalis and Isatis-Tinctoria. Hereditas 113:291–295

    Article  CAS  PubMed  Google Scholar 

  • Hauf S (2013) The spindle assembly checkpoint: progress and persistent puzzles. Biochem Soc Trans 41:1755–1760

    CAS  PubMed  Google Scholar 

  • Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118:715–729

    Article  CAS  PubMed  Google Scholar 

  • Heckmann S, Lermontova I, Berckmans B, De Veylder L, Baumlein H, Schubert I (2011) The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. Plant J Cell Mol Biol 68:646–656

    Article  CAS  Google Scholar 

  • Hemmerich P, Weidtkamp-Peters S, Hoischen C, Schmiedeberg L, Erliandri I, Diekmann S (2008) Dynamics of inner kinetochore assembly and maintenance in living cells. J Cell Biol 180:1101–1114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11:31–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houben A, Mette MF, Teo CH, Lermontova I, Schubert I (2013) Engineered plant minichromosomes. Int J Dev Biol 57:651–657

    Article  CAS  PubMed  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 97:1148–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoyt MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517

    Article  CAS  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed Central  PubMed  Google Scholar 

  • Hylander N (1957) Cardaminopsis suecica (Fr.) Hiit., a northern amphidiploid species. Bull Jard Bot Brux 27:591–604

    Article  Google Scholar 

  • Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, Obuse C, Kisu Y, Goshima N, Nomura F, Nomura N, Yoda K (2006) Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11:673–684

  • Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamm A, Galasso I, Schmidt T, Heslopharrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis-Arenosa and relationships between Arabidopsis species. Plant Mol Biol 27:853–862

    Article  CAS  PubMed  Google Scholar 

  • Kapusi E, Ma L, Teo CH, Hensel G, Himmelbach A, Schubert I, Mette MF, Kumlehn J, Houben A (2012) Telomere-mediated truncation of barley chromosomes. Chromosoma 121:181–190

    Article  CAS  PubMed  Google Scholar 

  • Kawabe A, Nasuda S (2005) Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Genet Genomics 272:593–602

    Article  CAS  PubMed  Google Scholar 

  • Kawabe A, Hansson B, Hagenblad J, Forrest A, Charlesworth D (2006) Centromere locations and associated chromosome rearrangements in Arabidopsis lyrata and A. thaliana. Genetics 173:1613–1619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

  • Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22:R966–R980

    Article  CAS  PubMed  Google Scholar 

  • Larsen NA, Al-Bassam J, Wei RR, Harrison SC (2007) Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proc Natl Acad Sci U S A 104:1201–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SH, Itkin-Ansari P, Levine F (2010) CENP-A, a protein required for chromosome segregation in mitosis, declines with age in islet but not exocrine cells. Aging (Albany NY) 2:785–790

    CAS  Google Scholar 

  • Lermontova I, Schubert I (2013) CENH3 for establishing and maintenance of centromeres. In: Jiang J, Birchler JA (eds) Plant centromere biology. Wiley, Oxford, p 210

    Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lermontova I, Fuchs J, Schubert V, Schubert I (2007) Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma 116:507–510

    Article  PubMed  Google Scholar 

  • Lermontova I, Fuchs J, Schubert I (2008) The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development. Front Biosci J Virtual Libr 13:5202–5211

    Article  CAS  Google Scholar 

  • Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, Koszegi D, Schubert I (2011a) Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J Cell Mol Biol 68:40–50

    Article  CAS  Google Scholar 

  • Lermontova I, Rutten T, Schubert I (2011b) Deposition, turnover, and release of CENH3 at Arabidopsis centromeres. Chromosoma 120:633–640

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, Demidov D, Schubert V, Schubert I (2013) Arabidopsis KINETOCHORE NULL2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell 25:3389–3404

    Article  CAS  PubMed  Google Scholar 

  • Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98

    Article  CAS  PubMed  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA-sequences in Arabidopsis thaliana. Plant J 1:159–166

    Article  Google Scholar 

  • Martinez-Zapater JM, Estelle MA, Somerville CR (1986) A highly repeated DNA-sequence in Arabidopsis thaliana. Mol Gen Genet 204:417–423

    Article  CAS  Google Scholar 

  • May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:e79

    Article  PubMed Central  PubMed  Google Scholar 

  • Mendiburo MJ, Padeken J, Fulop S, Schepers A, Heun P (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334:686–690

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Murray JA (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J Cell Mol Biol 30:203–212

    Article  CAS  Google Scholar 

  • Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7:1248–1255

    Article  PubMed  Google Scholar 

  • Moraes IC, Lermontova I, Schubert I (2011) Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. Plant Mol Biol 75:253–261

    Article  CAS  PubMed  Google Scholar 

  • Murata M (2013) Plant centromere biology. Wiley, Oxford

    Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells Devoted Mol Cell Mech 9:105–120

    Article  CAS  Google Scholar 

  • Ogura Y, Shibata F, Sato H, Murata M (2004) Characterization of a CENP-C homolog in Arabidopsis thaliana. Gene Genet Syst 79:139–144

    Article  CAS  Google Scholar 

  • Pelissier T, Tutois S, Deragon JM, Tourmente S, Genestier S, Picard G (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29:441–452

    Article  CAS  PubMed  Google Scholar 

  • Pelissier T, Tutois S, Tourmente S, Deragon JM, Picard G (1996) DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97:141–151

    Article  CAS  PubMed  Google Scholar 

  • Phansalkar R, Lapierre P, Mellone BG (2012) Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosom Res Int J Mol Supramol Evol Asp Chromosom Biol 20:493–504

    Article  CAS  Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Kwong PN, Menorca RM, Valencia JT, Ramahi JS, Stewart JL, Tran RK, Sundaresan V, Comai L, Chan SW (2010) The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186:461–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen C, Murata M, Chan SW (2011) Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet 7:e1002121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sato H, Shibata F, Murata M (2005) Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosom Res Int J Mol Supramol Evol Asp Chromosom Biol 13:827–834

    Article  CAS  Google Scholar 

  • Schubert V, Lermontova I, Shubert I (2014) Loading of the centromeric histone H3 variant during meiosis – how does it differ from mitosis? Chromosoma in press

  • Schuh M, Lehner CF, Heidmann S (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 17:237–243

    Article  CAS  PubMed  Google Scholar 

  • Schuyler SC, Wu YF, Kuan VJ (2012) The Mad1-Mad2 balancing act—a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci 125:4197–4206

    Article  CAS  PubMed  Google Scholar 

  • She W, Grimanelli D, Rutowicz K, Whitehead MW, Puzio M, Kotlinski M, Jerzmanowski A, Baroux C (2013) Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140:4008–4019

    Article  CAS  PubMed  Google Scholar 

  • Shelby RD, Monier K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151:1113–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simoens CR, Gielen J, Van Montagu M, Inze D (1988) Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucleic Acids Res 16:6753–6766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154:925–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suijkerbuijk SJ, van Dam TJ, Karagoz GE, von Castelmur E, Hubner NC, Duarte AM, Vleugel M, Perrakis A, Rudiger SG, Snel B, Kops GJ (2012) The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell 22:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teo CH, Ma L, Kapusi E, Hensel G, Kumlehn J, Schubert I, Houben A, Mette MF (2011) Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J Cell Mol Biol 68:28–39

    Article  CAS  Google Scholar 

  • Teo CH, Lermontova I, Houben A, Mette MF, Schubert I (2013) De novo generation of plant centromeres at tandem repeats. Chromosoma 122:233–241

    Article  CAS  PubMed  Google Scholar 

  • Thompson H, Schmidt R, Brandes A, Heslop-Harrison JS, Dean C (1996) A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet 253:247–252

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Tang D, Luo Q, Jin Y, Shen Y, Wang K, Cheng Z (2012) BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. Plant Cell 24:4961–4973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss E, Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132:111–123

    Article  CAS  PubMed  Google Scholar 

  • Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P (2004) Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 24:6620–6630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams JS, Hayashi T, Yanagida M, Russell P (2009) Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol Cell 33:287–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoda K, Ando S, Okuda A, Kikuchi A, Okazaki T (1998) In vitro assembly of the CENP-B/alpha-satellite DNA/core histone complex: CENP-B causes nucleosome positioning. Gene Cells Dev Mol Cell Mech 3:533–548

    Article  CAS  Google Scholar 

  • Zhang W, Lee HR, Koo DH, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34

    Article  PubMed Central  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zwick ME, Salstrom JL, Langley CH (1999) Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics 152:1605–1614

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ingo Schubert for the critical reading of the article and helpful suggestions and Karin Lipfert for the help with preparation of figures. I.L. is supported by a grant from the Deutsche Forschungsgemeinschaft (LE2299/1-1). D.D. is supported by the DFG (SFB 648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Lermontova.

Additional information

Responsible Editors: Martin Lysak and Paul Fransz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lermontova, I., Sandmann, M. & Demidov, D. Centromeres and kinetochores of Brassicaceae. Chromosome Res 22, 135–152 (2014). https://doi.org/10.1007/s10577-014-9422-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9422-z

Keywords

Navigation