Skip to main content

Advertisement

Log in

Heterochromatin and the cohesion of sister chromatids

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Heterochromatin, once thought to be the useless junk of chromosomes, is now known to play significant roles in biology. Underlying much of this newfound fame are links between the repressive chromatin structure and cohesin, the protein complex that mediates sister chromatid cohesion. Heterochromatin-mediated recruitment and retention of cohesin to domains flanking centromeres promotes proper attachment of chromosomes to the mitotic and meiotic spindles. Heterochromatin assembled periodically between convergently transcribed genes also recruits cohesin, which promotes a novel form of transcription termination. Heterochromatin-like structures in budding yeast also recruit cohesin. Here the complex appears to regulate transcriptional silencing and recombination between repeated DNA sequences. The link between heterochromatin and cohesin is particularly relevant to human health. In Roberts-SC phocomelia syndrome, heterochromatic cohesion is selectively lost due to mutation of the acetyltransferase responsible for cohesin activation. In this review I discuss recent work that relates to these relationships between heterochromatin and cohesin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAR:

cohesin-associated region

CTCF:

CCCTC-binding protein

H3K9:

lysine 9 of histone H3

HP1:

heterochromatin protein of higher eukaryotes

RBS-SC:

Roberts-SC phocomelia syndrome

Sir:

silent information regulator

Swi6:

a homologue of HP1

tDNA :

tRNA gene

rDNA :

ribosomal RNA gene

References

  • Bailis JM, Bernard P, Antonelli R, Allshire RC, Forsburg SL (2003) Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat Cell Biol 5:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Bausch C, Noone S, Henry JM et al (2007) Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol Cell Biol 27:8522–8532

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar TR, Heeger S, Lehane C et al (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321:563–566

    Article  PubMed  CAS  Google Scholar 

  • Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542

    Article  PubMed  CAS  Google Scholar 

  • Buhler M, Moazed D (2007) Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14:1041–1048

    Article  PubMed  Google Scholar 

  • Chang CR, Wu CS, Hom Y, Gartenberg MR (2005) Targeting of cohesin by transcriptionally silent chromatin. Genes Dev 19:3031–3042

    Article  PubMed  CAS  Google Scholar 

  • Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–737

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio C, Schmidt CK, Katou Y et al (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227

    Article  PubMed  Google Scholar 

  • Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 11:741–750

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Kamakaka RT (2001) RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 20:520–531

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708

    Article  PubMed  CAS  Google Scholar 

  • Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116:1–13

    Article  PubMed  Google Scholar 

  • Dubey RN, Gartenberg MR (2007) A tDNA establishes cohesion of a neighboring silent chromatin domain. Genes Dev 21:2150–2160

    Article  PubMed  CAS  Google Scholar 

  • Eckert CA, Gravdahl DJ, Megee PC (2007) The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev 21:278–291

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL et al (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Gause M, Schaaf CA, Dorsett D (2008) Cohesin and CTCF: cooperating to control chromosome conformation? Bioessays 30:715–718

    Article  PubMed  CAS  Google Scholar 

  • Glynn EF, Megee PC, Yu HG et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  PubMed  Google Scholar 

  • Gordillo M, Vega H, Trainer AH et al (2008) The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 17:2172–2180

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  PubMed  CAS  Google Scholar 

  • Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777

    Article  PubMed  CAS  Google Scholar 

  • Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983–995

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature 454:297–301

    Article  PubMed  CAS  Google Scholar 

  • Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180

    Article  PubMed  CAS  Google Scholar 

  • Hou F, Chu CW, Kong X, Yokomori K, Zou H (2007) The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. J Cell Biol 177:587–597

    Article  PubMed  CAS  Google Scholar 

  • Ivanov D, Nasmyth K (2005) A topological interaction between cohesin rings and a circular minichromosome. Cell 122:849–860

    Article  PubMed  CAS  Google Scholar 

  • Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12:323–328

    Article  PubMed  CAS  Google Scholar 

  • Johanson K, Johanson J (2006) Regulation of chromosome structure by histone H3S10 phosphorylation. Chromosome Res 14:393–404

    Article  Google Scholar 

  • Kitajima TS, Yokobayashi S, Yamamoto M, Watanabe Y (2003) Distinct cohesin complexes organize meiotic chromosome domains. Science 300:1152–1155

    Article  PubMed  CAS  Google Scholar 

  • Kitajima TS, Sakuno T, Ishiguro K et al (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Ganley AR (2005) Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–1584

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M (2004) SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 117:441–453

    Article  PubMed  CAS  Google Scholar 

  • Koch B, Kueng S, Ruckenbauer C, Wendt KS, Peters JM (2008) The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 117:199–210

    Article  PubMed  Google Scholar 

  • Laloraya S, Guacci V, Koshland D (2000) Chromosomal address of the cohesion component Mcd1p. J Cell Biol 151:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Lau A, Blitzblau H, Bell SP (2002) Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae. Genes Dev 16:2935–2945

    Article  CAS  Google Scholar 

  • Lengronne A, Katou Y, Mori S et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578

    Article  PubMed  CAS  Google Scholar 

  • Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28:327–334

    Article  PubMed  CAS  Google Scholar 

  • McNairn AJ, Gerton JL (2008) The chromosome glue gets a little stickier. Trends Genet 24:382–389

    Article  PubMed  CAS  Google Scholar 

  • Misulovin Z, Schwartz YB, Li XY et al (2008) Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117:89–102

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Cam HP, Maraia RJ, Grewal SI (2006) A role for TFIIIC transcription factor complex in genome organization. Cell 125:859–872

    Article  PubMed  CAS  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S et al (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4:89–93

    Article  PubMed  CAS  Google Scholar 

  • Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE (2008) Sister chromatid cohesion: a simple concept with a complex reality. Ann Rev Cell Dev Biol 24:105–129

    Article  CAS  Google Scholar 

  • Parelho V, Hadjur S, Spivakov M et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433

    Article  PubMed  CAS  Google Scholar 

  • Pasero P, Bensimon A, Schwob E (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 16:2479–2484

    Article  PubMed  CAS  Google Scholar 

  • Peng JC, Karpen GH (2008) Epigenetic regulation of heterochromatic DNA stability. Curr Opin Genet Dev 18:204–211

    Article  PubMed  CAS  Google Scholar 

  • Riedel CG, Katis VL, Katou Y et al (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61

    Article  PubMed  CAS  Google Scholar 

  • Rusché LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516

    Article  PubMed  Google Scholar 

  • Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465

    Article  PubMed  CAS  Google Scholar 

  • Schüle B, Oviedo A, Johnston K, Pai S, Francke U (2005) Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am J Hum Genet 77:1117–1128

    Article  PubMed  Google Scholar 

  • Takata H, Matsunaga S, Morimoto A et al (2007) PHB2 protects sister-chromatid cohesion in mitosis. Curr Biol 17:1356–1361

    Article  PubMed  CAS  Google Scholar 

  • Tanaka TU, Stark MJ, Tanaka K (2005) Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 6:929–942

    Article  PubMed  CAS  Google Scholar 

  • Unal E, Heidinger-Pauli JM, Kim W et al (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321:566–569

    Article  PubMed  Google Scholar 

  • Van Den Berg DJ, Francke U (1993) Roberts syndrome: a review of 100 cases and a new rating system for severity. Am J Med Genet 47:1104–1123

    Article  Google Scholar 

  • Vega H, Waisfisz Q, Gordillo M et al (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37:468–470

    Article  PubMed  CAS  Google Scholar 

  • Venkatasubrahmanyam S, Hwang WW, Meneghini MD, Tong AH, Madhani HD (2007) Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc Natl Acad Sci U S A 104:16609–16614

    Article  PubMed  CAS  Google Scholar 

  • Wendt KS, Yoshida K, Itoh T et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi Y, Sakuno T, Shimura M, Watanabe Y (2008) Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455:251–255

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Shi X, Li Y et al (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31:143–151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank current and past members of my research team for thoughtful discussions and experimentation. This work was funded by grants from the NIH (GM51402) and the March of Dimes (1-FY08–481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gartenberg.

Additional information

Responsible Editor: Christian Haering

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gartenberg, M. Heterochromatin and the cohesion of sister chromatids. Chromosome Res 17, 229–238 (2009). https://doi.org/10.1007/s10577-008-9012-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-9012-z

Keywords

Navigation