Skip to main content
Log in

Structural and functional organization of centromeres in plant chromosomes

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The centromere is a specific chromosomal locus that forms the protein complex and kinetochore, maintains sister chromatid cohesion, controls chromosome attachment to the spindle, and coordinates chromosome movement during mitosis and meiosis. Defective centromere assembly or its dysfunction causes cell cycle arrest, structural abnormalities of the chromosomes, and aneuploidy. This review collects the data on the structure, functions, and epigenetic modification of centromeric chromatin, the structure and functions of the kinetochore, and sister chromatid cohesion. Taken together, these data provide insight into the specific architecture and functioning of the centromere during chromosome division and segregation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Houben, A. and Schubert, I., DNA and proteins of plant centromeres, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 554–560.

    CAS  PubMed  Google Scholar 

  2. Ma, J., Wing, R.A., Bennetzen, J.L., and Jackson, S.A., Plant centromere organization: a dynamic structure with conserved functions, Trends Genet., 2007, vol. 23, pp. 134–139.

    CAS  PubMed  Google Scholar 

  3. Hirsch, C.D. and Jiang, J., Centromeres: sequences, structure, and biology, in Plant Genome Diversity, Wendel, J.F., et al., Eds., Wien: Springer-Verlag, 2012, vol. 1, pp. 59–71.

    Google Scholar 

  4. Nagaki, K., Walling, J., Hirsch, C., et al., Structure and evolution of plant centromeres, in Centromere, vol. 48 of Progress in Molecular and Subcellular Biology, Ugarković, Ed., Berlin: Springer-Verlag, 2009, pp. 153–180.

    Google Scholar 

  5. Laikova, L.I., Belan, I.A., Badaeva, E.D., et al., Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii Zhuk. × Aegilops tauschii Coss., Russ. J. Genet., 2013, vol. 49, pp. 89–91.

    CAS  Google Scholar 

  6. Badaeva, E.D., Budashkina, E.B., Bilinskaya, E.N., and Pukhalskiy V.A., Intergenomic chromosome substitutions in wheat interspecific hybrids and their use in the development of a genetic nomenclature of Triticum timopheevii chromosomes, Russ. J. Genet., 2010, vol. 46, pp. 769–785.

    CAS  Google Scholar 

  7. Sears, E.R., Misdivision of univalents in common wheat, Chromosoma, 1952, vol. 4, pp. 535–550.

    CAS  PubMed  Google Scholar 

  8. Friebe, B., Zhang, P., Linc, G., and Gill, B.S., Robertsonian translocations in wheat arise by centric mis-division of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II, Cytogenet. Genome. Res., 2005, vol. 109, pp. 293–297.

    CAS  PubMed  Google Scholar 

  9. Lukaszewski, A.J., Behavior of centromeres in univalents and centric misdivision in wheat, Cytogenet. Genome. Res., 2010, vol. 129, pp. 97–109.

    CAS  PubMed  Google Scholar 

  10. Maan, S.S. and Sasakuma, T., Fertility of amphihaploids in Triticinae, J. Hered., 1977, vol. 57, pp. 76–83.

    Google Scholar 

  11. Silkova, O.G., Shchapova, A.I., and Shumny, V.K., Patterns of meiosis in ABDR amphihaploids depend on the specific type of univalent chromosome division, Euphytica, 2011, vol. 178, pp. 415–426.

    Google Scholar 

  12. Dong, F., Miller, J.T., Jackson, S.A., et al., Rice (Oryza sativa) centromeric regions consist of complex DNA, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 8135–8140.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Nonomura, K.I. and Kurata, N., Organization of the 1.9-kb repeat unit RCE1 in the centromeric region of rice chromosomes, Mol. Gen. Genet., 1999, vol. 261, pp. 1–10.

    CAS  PubMed  Google Scholar 

  14. Cheng, Z., Dong, F., Langdon, T., et al., Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon, Plant Cell, 2002, vol. 14, pp. 1691–1704.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Martinez-Zapater, J., Estelle, M.A., and Somerville, C.R., A highly repeated DNA sequence in Arabidopsis thaliana, Mol. Gen. Genet., 1986, vol. 204, pp. 417–423.

    CAS  Google Scholar 

  16. Maluszynska, J. and Heslop-Harrison, J.S., Localization of tandemly repeated DNA sequences in Arabidopsis thaliana, Plant J., 1991, vol. 1, pp. 159–166.

    Google Scholar 

  17. Murata, M., Ogura, Y., and Motoyoshi, F., Centromeric repetitive sequences in Arabidopsis thaliana, Jpn. J. Genet., 1994, vol. 69, pp. 361–370.

    CAS  PubMed  Google Scholar 

  18. Fransz, P.F., Armstrong, S., de Jong, J.H., et al., Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region, Cell, 2000, vol. 100, pp. 367–376.

    CAS  PubMed  Google Scholar 

  19. Nagaki, K., Shibata, F., Kanatani, A., et al., Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco, Plant Cell Rep., 2012, vol. 31, pp. 771–779.

    CAS  PubMed  Google Scholar 

  20. Nagaki, K., Shibata, F., Suzuki, G., et al., Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres, Chromosome Res., 2011, vol. 19, pp. 591–605.

    CAS  PubMed  Google Scholar 

  21. Aragon-Alcaide, L., Miller, T., Schwarzacher, T., et al., A cereal centromeric sequence, Chromosoma, 1996, vol. 105, pp. 261–268.

    CAS  PubMed  Google Scholar 

  22. Jiang, J., Nasuda, S., Dong, F., et al., A conserved repetitive DNA element located in the centromeres of cereal chromosomes, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 14210–14213.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Nagaki, K., Neumann, P., Zhang, D., et al., Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice, Mol. Biol. Evol., 2005, vol. 22, pp. 845–855.

    CAS  PubMed  Google Scholar 

  24. Ananiev, E.V., Phillips, R.L., and Rines, H.W., Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 13073–13078.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhong, C.X., Marshall, J.B., Topp, C., et al., Centromeric retroelements and satellites interact with maize kinetochore protein CENH3, Plant Cell, 2002, vol. 14, pp. 2825–2836.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Hudakova, S., Michalek, W., Presting, G.G., et al., Sequence organization of barley centromeres, Nucleic Acids Res., 2001, vol. 29, pp. 5029–5035.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Presting, G.G., Malysheva, L., Fuchs, J., and Schubert, I., A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes, Plant J., 1998, vol. 16, pp. 721–728.

    CAS  PubMed  Google Scholar 

  28. Nagaki, K. and Murata, M., Characterization of CENH3 and centromere-associated DNA sequences in sugarcane, Chromosome Res., 2005, vol. 13, pp. 195–203.

    CAS  PubMed  Google Scholar 

  29. Liu, Z., Yue, W., Li, D., et al., Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres, Chromosoma, 2008, vol. 117, pp. 445–456.

    CAS  PubMed  Google Scholar 

  30. Francki, M.G., Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.), Genome, 2001, vol. 44, pp. 266–274.

    CAS  PubMed  Google Scholar 

  31. Li, B., Choulet, F., Heng, Y., et al., Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure, Plant J., 2013, vol. 73, pp. 952–965.

    CAS  PubMed  Google Scholar 

  32. Miller, J.T., Dong, F., Jackson, S.A., et al., Retrotransposon related DNA sequences in the centromeres of grass chromosomes, Genetics, 1998, vol. 150, pp. 1615–1623.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Miller, J.T., Jackson, S.A., Nasuda, S., et al., Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor, Theor. Appl. Genet., 1998, vol. 96, pp. 832–839.

    CAS  Google Scholar 

  34. Nonomura, K. and Kurata, N., The centromere composition of multiple repetitive sequences on rice chromosome 5, Chromosoma, 2001, vol. 110, pp. 284–291.

    CAS  PubMed  Google Scholar 

  35. Langdon, T., Seago, C., Mende, M., et al., Retrotransposon evolution in diverse plant genomes, Genetics, 2000, vol. 156, pp. 313–325.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Fukui, K.N., Suzuki, G., Lagudah, E.S., et al., Physical arrangement of retrotransposon-related repeats in centromeric regions of wheat, Plant Cell Physiol., 2001, vol. 42, pp. 189–196.

    CAS  PubMed  Google Scholar 

  37. Nagaki, K., Song, J., Stupar, R.M., et al., Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres, Genetics, 2003, vol. 163, pp. 759–770.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Gindullis, F., Desel, C., Galasso, I., and Schmidt, T., The large-scale organization of the centromeric region in beta species, Genome Res., 2001, vol. 11, pp. 253–265.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Saunders, V.A. and Houben, A., The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences, Genome, 2001, vol. 44, pp. 955–961.

    CAS  PubMed  Google Scholar 

  40. Sormacheva, I.D. and Blinov, A.G., LTR retrotransposons in plants, Russ. J. Genet.: Appl. Res., 2011, vol. 15, no. 2, pp. 351–382.

    Google Scholar 

  41. Gorinsek, B., Gubensek, F., and Kordis, D., Evolutionary genomics of chromoviruses in eukaryotes, Mol. Biol. Evol., 2004, vol. 21, pp. 781–798.

    CAS  PubMed  Google Scholar 

  42. Llorens, C., Futami, R., Covelli, L., et al., The gypsy database (GyDB) of mobile genetic elements: release 2.0, Nucleic Acids Res., 2011, vol. 39,suppl. 1, pp. D70–D74. doi: 10.1093/nar/gkq1061. http://gydb.org/index.php/Ty3/Gypsy#CRM

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Gao, X., Hou, Y., Ebina, H., et al., Chromodomains direct integration of retrotransposons to heterochromatin, Genome Res., 2008, vol. 118, pp. 359–369.

    Google Scholar 

  44. Neumann, P., Navrátilová, A., Koblížková, A., et al., Plant centromeric retrotransposons: a structural and cytogenetic perspective, Mobile DNA, 2011, vol. 2, pp. 2–16.

    Google Scholar 

  45. Nagaki, K., Cheng, Z., Ouyang, S., et al., Sequencing of a rice centromere uncovers active genes, Nat. Genet., 2004, vol. 36, pp. 138–145.

    CAS  PubMed  Google Scholar 

  46. Houben, A., Schroeder-Reiter, E., Nagaki, K., et al., CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley, Chromosoma, 2007, vol. 116, pp. 275–283.

    CAS  PubMed  Google Scholar 

  47. Jin, W., Melo, J.R., Nagaki, K., et al., Maize centromeres: organization and functional adaptation in the genetic background of oat, Plant Cell, 2004, vol. 16, pp. 571–581.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Nagaki, K., Talbert, P.B., Zhong, C.X., et al., Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres, Genetics, 2003, vol. 163, pp. 1221–1225.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Nagaki, K., Kashihara, K., and Murata, M., A centromeric DNA sequence colocalized with a centromerespecific histone H3 in tobacco, Chromosoma, 2009, vol. 118, pp. 249–257.

    CAS  PubMed  Google Scholar 

  50. Cheeseman, I.M. and Desai, A., Molecular architecture of the kinetochore-microtubule interface, Nat. Rev. Mol. Cell Biol., 2008, vol. 9, pp. 33–47.

    CAS  PubMed  Google Scholar 

  51. Fukagawa, T. and De Wulf, P., Kinetochore composition, formation, and organization, in The Kinetochore, De Wulf, P. and Earnshaw, W.C., Eds., Springer-Verlag, 2009, pp. 133–192.

    Google Scholar 

  52. Kotwaliwale, C.V. and Biggins, S., Post-translational modifications that regulate kinetochore activity, in The Kinetochore, De Wulf, P. and Earnshaw, W.C., Eds., Springer-Verlag, 2009, pp. 293–344.

    Google Scholar 

  53. Yu, H-G., Hiatt, E.N., and Dawe, R.K., The plant kinetochore, Trends Plant Sci., 2000, vol. 5, pp. 543–548.

    CAS  PubMed  Google Scholar 

  54. Talbert, P.B., Masuelli, R., Tyagi, A.P., et al., Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant, Plant Cell, 2002, vol. 14, pp. 1053–1066.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Hirsch, C.D., Wu, Y.F., Yan, H.H., and Jiang, J.M., Lineage-specific adaptive evolution of the centromeric protein CENH3 in diploid and allotetraploid Oryza species, Mol. Biol. Evol., 2009, vol. 26, pp. 2877–2885.

    CAS  PubMed  Google Scholar 

  56. Wang, G., He, Q., Liu, F., et al., Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species, Chromosoma, 2011, vol. 120, pp. 353–365.

    CAS  PubMed  Google Scholar 

  57. Dawe, R.K., Reed, L., Yu, H.G., et al., A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore, Plant Cell, 1999, vol. 11, pp. 1227–1238.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Nagaki, K., Kashihara, K., and Murata, M., Characterization of the two centromeric proteins CENP-C and MIS12 in Nicotiana, Chromosome Res., 2009, vol. 17, pp. 719–726.

    CAS  PubMed  Google Scholar 

  59. Sato, H., Shibata, F., and Murata, M., Characterization of a Mis12 homologue in Arabidopsis thaliana, Chromosome Res., 2005, vol. 13, pp. 827–834.

    CAS  PubMed  Google Scholar 

  60. Lermontova, I., Kuhlmann, M., and Friedel, S., Arabidopsis KINETOCHORE NULL2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres, Plant Cell, 2013, vol. 25 P, pp. 3389–3404.

    Google Scholar 

  61. De Rop, V., Padeganeh, A., and Maddox, P.S., CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly, Chromosoma, 2012, vol. 121, pp. 527–538.

    PubMed Central  PubMed  Google Scholar 

  62. Yu, H.G., Muszynski, M.G., and Dawe, R.K., The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns, J. Cell Biol., 1999, vol. 145, pp. 425–435.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. ten Hoopen, R., Schleker, T., Manteuffel, R., and Schubert, I., Transient CENP-E-like kinetochore proteins in plants, Chromosome Res., 2002, vol. 10, pp. 561–570.

    PubMed  Google Scholar 

  64. Du, Y. and Dawe, R.K., Maize NDC80 is a constitutive feature of the central kinetochore, Chromosome Res., 2007, vol. 15, pp. 767–775.

    CAS  PubMed  Google Scholar 

  65. Li, X. and Dawe, R.K., Fused sister kinetochores initiate the reductional division in meiosis I, Nat. Cell Biol., 2009, vol. 11, pp. 1103–1114.

    CAS  PubMed  Google Scholar 

  66. Ravi, M. and Chan, S.W.L., Haploid plants produced by centromere-mediated genome elimination, Nature, 2010, vol. 464, pp. 615–620.

    CAS  PubMed  Google Scholar 

  67. Saneia, M., Pickering, R., Kumkea, K., et al., Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 498–513.

    Google Scholar 

  68. Lermontova, I., Schubert, V., Fuchs, J., et al., Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain, Plant Cell, 2006, vol. 18, pp. 2443–2451.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Lermontova, I., Koroleva, O., Rutten, T., et al., Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation, Plant J., 2011, vol. 68, pp. 40–50.

    CAS  PubMed  Google Scholar 

  70. Ravi, M., Shibata, F., Ramahi, J.S., et al., Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana, PLoS Genet., 2011, vol. 7, no. 6. e1002121

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Nagaki, K., Terada, K., Wakimoto, M., et al., Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells, Chromosome Res., 2010, vol. 18, pp. 203–211.

    CAS  PubMed  Google Scholar 

  72. Zhang, H. and Dawe, R.K., Mechanisms of plant spindle formation, Chromosome Res., 2011, vol. 19, pp. 335–344.

    CAS  PubMed  Google Scholar 

  73. Demidov, D., Van Damme, D., Geelen, D., et al., Identification and dynamics of two classes of Aurora-like kinases in Arabidopsis and other plants, Plant Cell, 2005, vol. 17, pp. 836–848.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Lermontova, I., Fuchs, J., Schubert, V., and Schubert, I., Loading time of the centromeric histone H3 variant differs between plants and animals, Chromosoma, 2007, vol. 116, pp. 507–510.

    PubMed  Google Scholar 

  75. Nagaki, K., Yamamoto, M., Yamaji, N., et al., Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium, PLoS One, 2012, vol. 7. doi: 10.1371/journal.pone.0051315

  76. Zhang, W., Lee, H.R., Koo, D.H., and Jiang, J., Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize, Plant Cell, 2008, vol. 20, pp. 25–34.

    PubMed Central  PubMed  Google Scholar 

  77. Koo, D.H. and Jiang, J.M., Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation, Plant J., 2009, vol. 59, pp. 509–516.

    CAS  PubMed  Google Scholar 

  78. Shi, J. and Dawe, R.K., Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27, Genetics, 2006, vol. 173, pp. 1571–1583.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Jin, W., Lamb, J.C., Zhang, W., et al., Histone modifications associated with both A and B chromosomes of maize, Chromosome Res., 2008, vol. 16, pp. 1203–1214.

    CAS  PubMed  Google Scholar 

  80. Soppe, W.J.J., Jasencakova, Z., Houben, A., et al., DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis, EMBO J., 2002, vol. 21, pp. 6549–6559.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Gent, J.I., Dong, Yu., Jiang, J., and Dawe, R.K., Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications, Nucleic Acids Res., 2012, vol. 40, pp. 1550–1560.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhang, W., Friebe, B., Gill, B.S., and Jiang, J., Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres, Chromosoma, 2010, vol. 119, pp. 553–563.

    PubMed  Google Scholar 

  83. Houben, A., Wako, T., Furushima-Shimogawara, R., et al., Short communication: the cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes, Plant J., 1999, vol. 18, pp. 675–679.

    CAS  PubMed  Google Scholar 

  84. Gernand, D., Demidov, D., and Houben, A., The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes, Cytogenet. Genome Res., 2003, vol. 101, pp. 172–176.

    CAS  PubMed  Google Scholar 

  85. Manzanero, S., Rutten, T., Kotseruba, V., and Houben, A., Alterations in the distribution of histone H3 phosphorylation in mitotic plant chromosomes in response to cold treatment and the protein phosphatase inhibitor cantharidin, Chromosome Res., 2002, vol. 10, pp. 467–476.

    CAS  PubMed  Google Scholar 

  86. Manzanero, S., Arana, P., Puertas, M.J., and Houben, A., The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis, Chromosoma, 2000, vol. 109, pp. 308–317.

    CAS  PubMed  Google Scholar 

  87. Zhang, X., Li, X., Marshall, J.B., et al., Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation, Plant Cell, 2005, vol. 17, pp. 572–583.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Kaszas, E. and Cande, W.Z., Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin, J. Cell Sci., 2000, vol. 113, pp. 3217–3226.

    CAS  PubMed  Google Scholar 

  89. Dong, Q. and Han, F., Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis, Plant J., 2012, vol. 71, pp. 800–809.

    CAS  PubMed  Google Scholar 

  90. Peters, J.M., Tedeschi, A., and Schmitz, J., The cohesin complex and its roles in chromosome biology, Genes Dev., 2008, vol. 22, pp. 3089–3114.

    CAS  PubMed  Google Scholar 

  91. Nasmyth, K. and Haering, C.H., Cohesin: its roles and mechanisms, Ann. Rev. Genet., 2009, vol. 43, pp. 525–558.

    CAS  PubMed  Google Scholar 

  92. Marston, A.L., Roles of centromeres and kinetochores in meiosis, in The Kinetochore, De Wulf, P. and Earnshaw, W.C., Eds., Springer-Verlag, 2009, pp. 395–431.

    Google Scholar 

  93. Watanabe, Y. and Kitajima, T.S., Shugoshin protects cohesin complexes at centromeres, Philos. Trans. R. Soc., B, 2005, vol. 360, pp. 515–521.

    CAS  Google Scholar 

  94. Sakuno, T. and Watanabe, Y., Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions, Chromosome Res., 2009, vol. 17, pp. 239–249.

    CAS  PubMed  Google Scholar 

  95. Rudra, S. and Skibbens, R.V., Cohesin codes—interpreting chromatin architecture and the many facets of cohesin function, J. Cell Sci., 2013, vol. 126, pp. 31–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Watanabe, Y., Modifying sister chromatid cohesion for meiosis, J. Cell Sci., 2004, vol. 117, pp. 4017–4023.

    CAS  PubMed  Google Scholar 

  97. Revenkova, E. and Jessberger, R., Keeping sister chromatids together: cohesins in meiosis, Reproduction, 2005, vol. 130, pp. 783–790.

    CAS  PubMed  Google Scholar 

  98. Kitajima, T.S., Hauf, S., Ohsugi, M., et al., Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization, Curr. Biol., 2005, vol. 15, pp. 353–359.

    CAS  PubMed  Google Scholar 

  99. Kitajima, T.S., Sakuno, T., Ishiguro, K., et al., Shugoshin collaborates with protein phosphatase 2A to protect cohesion, Nature, 2006, vol. 441, pp. 46–52.

    CAS  PubMed  Google Scholar 

  100. McGuinness, B.E., Hirota, T., Kudo, N.R., et al., Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells, PLoS Biol., 2005, vol. 3, no. 3. e86

    PubMed Central  PubMed  Google Scholar 

  101. Kitajima, T.S., Kawashima, S.A., and Watanabe, Y., Conserved kinetochore protein shugoshin protects centromeric from cohesion during meiosis, Nature, 2004, vol. 427, pp. 510–517.

    CAS  PubMed  Google Scholar 

  102. Toth, A., Rabitsch, K.P., Galova, M., et al., Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I, Cell, 2000, vol. 103, pp. 1155–1168.

    CAS  PubMed  Google Scholar 

  103. Kerrebrock, A.W., Miyazaki, W.Y., Birnby, D., and Orr-Weaver, T.L., The Drosophila mei-s332 gene promotes sister chromatid cohesion in meiosis following kinetochore differentiation, Genetics, 1992, vol. 130, pp. 827–841.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Gutierrez-Caballero, C., Cebollero, L.R., and Pendas, A.M., Shugoshins: from protectors of cohesion to versatile adaptors at the centromere, Trends Genet., 2012, vol. 28, pp. 351–360.

    CAS  PubMed  Google Scholar 

  105. Golubovskaya, I.N., Hamant, O., Timofejeva, L., et al., Alleles of afd1 dissect rec8 functions during meiotic prophase I, J. Cell Sci., 2006, vol. 119, pp. 3306–3315.

    CAS  PubMed  Google Scholar 

  106. Bhatt, A.M., Lister, C., Page, T., et al., The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family, Plant J., 1999, vol. 19, pp. 463–472.

    CAS  PubMed  Google Scholar 

  107. Cai, X., Dong, F., Edelmann, R.E., and Makaroff, C.A., The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing, J. Cell Sci., 2003, vol. 116, pp. 2999–3007.

    CAS  PubMed  Google Scholar 

  108. Chelysheva, L., Diallo, S., Vezon, D., et al., AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis, J. Cell Sci., 2005, vol. 118, pp. 4621–4632.

    CAS  PubMed  Google Scholar 

  109. Shao, T., Tang, D., Wang, K., et al., OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis, Plant Physiol., 2011, vol. 156, pp. 1386–1396.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Hamant, O., Golubovskaya, I., Meeley, R., et al., A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and no mitotic functions, Curr. Biol., 2005, vol. 15, pp. 948–954.

    CAS  PubMed  Google Scholar 

  111. Zamariola, L., De Storme, N., Tiang, C.L., et al., SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis, Plant Reprod., 2013, vol. 26, pp. 197–208.

    CAS  PubMed  Google Scholar 

  112. Wang, M., Tang, D., Wang, K., et al., OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis, Plant J. Cell Mol. Biol., 2011, vol. 67, pp. 583–594.

    CAS  Google Scholar 

  113. Che, L., Tang, D., Wang, K., et al., OsAM1 is required for leptotene-zygotene transition in rice, Cell Res., 2011, vol. 21, pp. 654–665.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Silkova.

Additional information

Original Russian Text © O.G. Silkova, D.B. Loginova, 2014, published in Genetika, 2014, Vol. 50, No. 12, pp. 1405–1417.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkova, O.G., Loginova, D.B. Structural and functional organization of centromeres in plant chromosomes. Russ J Genet 50, 1243–1254 (2014). https://doi.org/10.1134/S1022795414120114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414120114

Keywords

Navigation