Skip to main content

Advertisement

Log in

Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is the most frequent malignancy among primary brain tumors in adults and one of the worst 5-year survival rates (< 7%) among all human cancers. Till now, treatments that target particular cell or intracellular metabolism have not improved patients’ survival. GBM recruits healthy brain cells and subverts their processes to create a microenvironment that contributes to supporting tumor progression. This microenvironment encompasses a complex network in which malignant cells interact with each other and with normal and immune cells to promote tumor proliferation, angiogenesis, metastasis, immune suppression, and treatment resistance. Communication can be direct via cell-to-cell contact, mainly through adhesion molecules, tunneling nanotubes, gap junctions, or indirect by conventional paracrine signaling by cytokine, neurotransmitter, and extracellular vesicles. Understanding these communication routes could open up new avenues for the treatment of this lethal tumor. Hence, therapeutic approaches based on glioma cells` communication have recently drawn attention. This review summarizes recent findings on the crosstalk between glioblastoma cells and their tumor microenvironment, and the impact of this conversation on glioblastoma progression. We also discuss the mechanism of communication of glioma cells and their importance as therapeutic targets and diagnostic and prognostic biomarkers. Overall, understanding the biological mechanism of specific interactions in the tumor microenvironment may help in predicting patient prognosis and developing novel therapeutic strategies to target GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

ALDH:

Aldehyde dehydrogenase

BBB:

Blood–brain barrier

CAF:

Cancer-associated fibroblast

CM:

Conditioned media

CX:

Connexin

CXCL:

C-X-C motif chemokine ligand

CXCR:

C-X-C motif chemokine receptors

ECM:

Extracellular matrix

EVs:

Extracellular vesicles

FAPα:

Fibroblast activation protein alpha

FN:

Fibronectin

IBP-2:

Insulin-like growth factor-binging protein 2

IDH1:

Isocitrate dehydrogenase 1

JAK2:

Janus kinase 2

JNK:

C-Jun N-terminal kinase

GBM:

Glioblastoma

GSCs:

GBM stem-like cells

MYDGF:

Myeloid-derived growth factor

NK:

Natural killer

NLGN3:

Neuron-derived neuroligin-3

PD-L1:

Programmed death-ligand

RAS:

Rat sarcoma virus

SDF-1:

Stromal cell-derived factor-1

SOX2:

SRY (sex determining region Y)-box 2

STAT3:

Signal Transducer and Activator of Transcription 3

TEXs:

Tumor-derived exosome’s

TME:

Tumor microenvironment

TIMP-2:

Tissue inhibitor of metalloproteinases-2

TMs:

Tumor microtubes

TMZ:

Temozolomide

TNTs:

Tunneling nanotubes

WNT:

Wingless-related integration site

References

  • Abels ER, Broekman ML, Breakefield XO, Maas SL (2019) Glioma EVs contribute to immune privilege in the brain. Trends Cancer 5(7):393–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K (2018) Fibroblasts in the tumor microenvironment: shield or spear? Int J Mol Sci 19(5):1532

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariazi J, Benowitz A, De Biasi V, Den Boer ML, Cherqui S, Cui H et al (2017) Tunneling nanotubes and gap junctions—their role in long-range intercellular communication during development, health, and disease conditions. Front Mol Neurosci 10:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M et al (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 18(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Bălașa A, Șerban G, Chinezu R, Hurghiș C, Tămaș F, Manu D (2020) The involvement of exosomes in glioblastoma development, diagnosis, prognosis, and treatment. Brain Sci 10(8):553

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  • Barber TM, McCarthy MI, Wass JA, Franks S (2006) Obesity and polycystic ovary syndrome. Clin Endocrinol 65(2):137–145

    Article  CAS  Google Scholar 

  • Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, Dasgupta PS et al (2004) Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Can Res 64(16):5551–5555

    Article  CAS  Google Scholar 

  • Belousov A, Titov S, Shved N, Garbuz M, Malykin G, Gulaia V et al (2019) The extracellular matrix and biocompatible materials in glioblastoma treatment. Front Bioeng Biotechnol 7:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Biasoli D, Sobrinho M, Da Fonseca A, De Matos D, Romão L, de Moraes MR et al (2014) Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy. Oncogenesis 3(10):e123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A et al (2011) Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 13(1):132–142

    Article  CAS  PubMed  Google Scholar 

  • Bonavia R, Inda MM, Cavenee WK, Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Can Res 71(12):4055–4060

    Article  CAS  Google Scholar 

  • Boso D, Rampazzo E, Zanon C, Bresolin S, Maule F, Porcù E et al (2019) HIF-1α/Wnt signaling-dependent control of gene transcription regulates neuronal differentiation of glioblastoma stem cells. Theranostics 9(17):4860–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C et al (2016) Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol 131(3):365–378

    Article  CAS  PubMed  Google Scholar 

  • Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO (2018) Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 14(8):482–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Bronkhorst AJ, Ungerer V, Holdenrieder S (2019) The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif 17:100087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Sughrue ME (2018) Glioblastoma: new therapeutic strategies to address cellular and genomic complexity. Oncotarget 9(10):9540–9554

    Article  PubMed  Google Scholar 

  • Caragher SP, Hall RR, Ahsan R, Ahmed AU (2018) Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro Oncol 20(8):1014–1025

    Article  CAS  PubMed  Google Scholar 

  • Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A et al (2009) NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol 182(6):3530–3539

    Article  CAS  PubMed  Google Scholar 

  • Chakroborty D, Chowdhury UR, Sarkar C, Baral R, Dasgupta PS, Basu S (2008) Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Investig 118(4):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59(8):1169–1180

    Article  PubMed  Google Scholar 

  • Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW et al (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Can Res 77(9):2266–2278

    Article  CAS  Google Scholar 

  • Cheng L, Davison DD, Adams J, Lopez-Beltran A, Wang L, Montironi R et al (2014) Biomarkers in bladder cancer: translational and clinical implications. Crit Rev Oncol Hematol 89(1):73–111

    Article  PubMed  Google Scholar 

  • Chintala SK, Sawaya R, Gokaslan ZL, Fuller G, Rao JS (1996) Immunohistochemical localization of extracellular matrix proteins in human glioma, both in vivo and in vitro. Cancer Lett 101(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Chiorean R, Berindan-Neagoe I, Braicu C, Florian IS, Leucuta D, Crisan D et al (2014) Quantitative expression of serum biomarkers involved in angiogenesis and inflammation, in patients with glioblastoma multiforme: correlations with clinical data. Cancer Biomark 14(2–3):185–194

    Article  PubMed  Google Scholar 

  • Choi H, Moon A (2018) Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention. Arch Pharmacal Res 41(7):711–724

    Article  CAS  Google Scholar 

  • Choi J, Stradmann-Bellinghausen B, Yakubov E, Savaskan NE, Régnier-Vigouroux A (2015) Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol Ther 16(8):1205–1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen K, Schrøder HD, Kristensen BW (2008) CD133 identifies perivascular niches in grade II-IV astrocytomas. J Neurooncol 90(2):157–170

    Article  PubMed  Google Scholar 

  • Cina C, Bechberger JF, Ozog MA, Naus CC (2007) Expression of connexins in embryonic mouse neocortical development. J Comp Neurol 504(3):298–313

    Article  CAS  PubMed  Google Scholar 

  • Clarke MR, Imhoff FM, Baird SK (2015) Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase-1 and-2. Mol Carcinog 54(10):1214–1219

    Article  CAS  PubMed  Google Scholar 

  • Codrici E, Enciu A-M, Popescu I-D, Mihai S, Tanase C (2016) Glioma stem cells and their microenvironments: providers of challenging therapeutic targets. Stem cells Int

  • Corsi L, Mescola A, Alessandrini A (2019) Glutamate receptors and glioblastoma multiforme: an old “Route” for new perspectives. Int J Mol Sci 20(7):1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis ME (2016) Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs 20(5 Suppl):S2-8

    Article  PubMed  PubMed Central  Google Scholar 

  • De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474

    Article  PubMed  Google Scholar 

  • De Vleeschouwer S, Bergers G (2017) Glioblastoma: to target the tumor cell or the microenvironment? Exon Publications 315–40

  • Di C, Mattox K, Harward S, Adamson C (2010) Emerging therapeutic targets and agents for glioblastoma migrating cells. Anti-Cancer Agents Med Chem 10(7):543–555

    Article  CAS  Google Scholar 

  • Dieterich LC, Mellberg S, Langenkamp E, Zhang L, Zieba A, Salomäki H et al (2012) Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFβ2 in vascular abnormalization. J Pathol 228(3):378–390

    Article  CAS  PubMed  Google Scholar 

  • Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE et al (2020) Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev 159:332–343

    Article  CAS  PubMed  Google Scholar 

  • Esposito I, Kayed H, Keleg S, Giese T, Sage EH, Schirmacher P et al (2007) Tumor-suppressor function of SPARC-like protein 1/Hevin in pancreatic cancer. Neoplasia 9(1):8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H et al (2017) Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587. Can Res 77(21):5808–5819

    Article  CAS  Google Scholar 

  • Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z et al (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Can Res 69(18):7243–7251

    Article  CAS  Google Scholar 

  • Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Can Res 64(19):7011–7021

    Article  CAS  Google Scholar 

  • Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P et al (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Garnier D, Renoult O, Alves-Guerra M-C, Paris F, Pecqueur C (2019) Glioblastoma stem-like cells, metabolic strategy to kill a challenging target. Front Oncol 9:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Geraldo LHM, Garcia C, da Fonseca ACC, Dubois LGF, de Sampaio ESTCL, Matias D et al (2019) Glioblastoma therapy in the age of molecular medicine. Trends Cancer 5(1):46–65

    Article  CAS  PubMed  Google Scholar 

  • Giese A (2003) Glioma invasion–pattern of dissemination by mechanisms of invasion and surgical intervention, pattern of gene expression and its regulatory control by tumorsuppressor p53 and proto-oncogene ETS-1. Acta Neurochir Suppl 88:153–162

    CAS  PubMed  Google Scholar 

  • Giusti I, Delle Monache S, Di Francesco M, Sanità P, D’Ascenzo S, Gravina GL et al (2016) From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis. Tumour Biol 37(9):12743–12753

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Gupta A, Sharma SK (1998) Interleukin-6-mediated autocrine growth promotion in human glioblastoma multiforme cell line U87MG. J Neurochem 71(5):1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS et al (2005) HIF-1α, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24(19):3110–3120

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi A, Serpe C, Chece G, Nigro V, Sarra A, Ruzicka B et al (2019) Microglia-derived microvesicles affect microglia phenotype in glioma. Front Cell Neurosci 13:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan X, Hasan MN, Maniar S, Jia W, Sun D (2018) Reactive astrocytes in glioblastoma multiforme. Mol Neurobiol 55(8):6927–6938

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Jia Q, Song H-Y, Warren RS, Donner DB (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains: association with endothelial cell proliferation (∗). J Biol Chem 270(12):6729–6733

    Article  CAS  PubMed  Google Scholar 

  • Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y et al (2014a) Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 110(10):2560–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Li Z, Master L, Master Z, Wu A (2014b) Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway. Br J Cancer 111(7):1400–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Lam EW, Sun Y (2019) Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol Cancer 18(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18(1):3–9

    PubMed  PubMed Central  Google Scholar 

  • Herman A, Gruden K, Blejec A, Podpečan V, Motaln H, Rožman P et al (2015) Analysis of glioblastoma patients’ plasma revealed the presence of microRNAs with a prognostic impact on survival and those of viral origin. PLoS ONE 10(5):e0125791

    Article  PubMed  PubMed Central  Google Scholar 

  • Hida K, Maishi N, Annan DA, Hida Y (2018) Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci 19(5):1272

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill BS, Pelagalli A, Passaro N, Zannetti A (2017) Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget 8(42):73296

    Article  PubMed  PubMed Central  Google Scholar 

  • Hitomi M, Deleyrolle LP, Mulkearns-Hubert EE, Jarrar A, Li M, Sinyuk M et al (2015) Differential connexin function enhances self-renewal in glioblastoma. Cell Rep 11(7):1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong X, Sin WC, Harris AL, Naus CC (2015) Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 6(17):15566

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma–molecular signaling and therapeutic targeting. Protein Cell 1(7):638–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Shi Y, Han B, Wang Q, Zhang B, Qi C et al (2020) LncRNA GAS5-AS1 inhibits glioma proliferation, migration, and invasion via miR-106b-5p/TUSC2 axis. Hum Cell 33(2):416–426

    Article  CAS  PubMed  Google Scholar 

  • Husain SR, Behari N, Kreitman RJ, Pastan I, Puri RK (1998) Complete regression of established human glioblastoma tumor xenograft by interleukin-4 toxin therapy. Cancer Res 58(16):3649–3653

    CAS  PubMed  Google Scholar 

  • Husain SR, Joshi BH, Puri RK (2001) Interleukin-13 receptor as a unique target for anti-glioblastoma therapy. Int J Cancer 92(2):168–175

    Article  CAS  PubMed  Google Scholar 

  • Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206

    Article  PubMed  Google Scholar 

  • Iguchi A, Kobayashi R, Yoshida M, Kobayashi K, Matsuo K, Kitajima I et al (2001) Vascular endothelial growth factor (VEGF) is one of the cytokines causative and predictive of hepatic veno-occlusive disease (VOD) in stem cell transplantation. Bone Marrow Transplant 27(11):1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K et al (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286(48):41434–41441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108(5):963–971

    Article  CAS  PubMed  Google Scholar 

  • Jarmusch AK, Alfaro CM, Pirro V, Hattab EM, Cohen-Gadol AA, Cooks RG (2016) Differential lipid profiles of normal human brain matter and gliomas by positive and negative mode desorption electrospray ionization—mass spectrometry imaging. PLoS ONE 11(9):e0163180

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Sun Q, Zhang J, Hu H (2018) MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma. Biochem Biophys Res Commun 499(3):719–726

    Article  CAS  PubMed  Google Scholar 

  • Johung T, Monje M (2017) Neuronal activity in the glioma microenvironment. Curr Opin Neurobiol 47:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JS (2020) The potential of exosomes as theragnostics in various clinical situations. Exosomes 18:467–486

    Article  Google Scholar 

  • Katsuta E, Rashid OM, Takabe K (2020) Clinical relevance of tumor microenvironment: Immune cells, vessels, and mouse models. Hum Cell 33(4):930–937

    Article  PubMed  Google Scholar 

  • Kawakami K, Kawakami M, Puri RK (2002) IL-13 receptor-targeted cytotoxin cancer therapy leads to complete eradication of tumors with the aid of phagocytic cells in nude mice model of human cancer. J Immunol 169(12):7119–7126

    Article  CAS  PubMed  Google Scholar 

  • Kemp K, Griffiths J, Campbell S, Lovell K (2013) An exploration of the follow-up up needs of patients with inflammatory bowel disease. J Crohns Colitis 7(9):e386–e395

    Article  PubMed  Google Scholar 

  • Kim DC, Kim KU, Kim YZ (2016) Prognostic role of methylation status of the MGMT promoter determined quantitatively by pyrosequencing in glioblastoma patients. J Korean Neurosurg Soc 59(1):26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krakstad C, Chekenya M (2010) Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer 9:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110(18):7312–7317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P et al (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896

    Article  PubMed  Google Scholar 

  • Le DM, Besson A, Fogg DK, Choi KS, Waisman DM, Goodyer CG et al (2003) Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 23(10):4034–4043

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung GP, Feng T, Sigoillot FD, Geyer FC, Shirley MD, Ruddy DA et al (2019) Hyperactivation of MAPK signaling is deleterious to RAS/RAF-mutant melanoma. Mol Cancer Res 17(1):199–211

    Article  CAS  PubMed  Google Scholar 

  • Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT et al (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10(8):1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, An G, Zhang M, Ma Q (2016) Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem Biophys Res Commun 477(4):743–748

    Article  CAS  PubMed  Google Scholar 

  • Lin JH-C, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S et al (2002) Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci 22(11):4302–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Carlsson R, Ambjørn M, Hasan M, Badn W, Darabi A et al (2013) PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients. J Neurosci 33(35):14231–14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Hou C, Chen H, Zong X, Zong P (2016) Genetics and epigenetics of glioblastoma: applications and overall incidence of IDH1 mutation. Front Oncol 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Chen L, Liu J, Meng H, Zhang R, Ma L et al (2017) Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Lett 411:182–190

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Sun Y, She X, Tu C, Cheng X, Wang L et al (2017) CASC2c as an unfavorable prognosis factor interacts with miR-101 to mediate astrocytoma tumorigenesis. Cell Death Dis 8(3):e2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi G, Corona G, Bellu L, Della Puppa A, Pambuku A, Fiduccia P et al (2015) Diagnostic value of plasma and urinary 2-hydroxyglutarate to identify patients with isocitrate dehydrogenase-mutated glioma. Oncologist 20(5):562–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  • Lucero R, Zappulli V, Sammarco A, Murillo OD, Cheah PS, Srinivasan S et al (2020) Glioma-derived miRNA-containing extracellular vesicles induce angiogenesis by reprogramming brain endothelial cells. Cell Rep 30(7):2065–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556

    Article  CAS  PubMed  Google Scholar 

  • Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamate signaling promotes glioma cell invasion. Can Res 67(19):9463–9471

    Article  CAS  Google Scholar 

  • Matarredona ER, Pastor AM (2019) Extracellular vesicle-mediated communication between the glioblastoma and its microenvironment. Cells 9(1):96

    Article  PubMed  PubMed Central  Google Scholar 

  • Matejka N, Reindl J (2019) Perspectives of cellular communication through tunneling nanotubes in cancer cells and the connection to radiation effects. Radiat Oncol 14(1):218

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuo M, Sakurai H, Ueno Y, Ohtani O, Saiki I (2006) Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin αv-mediated ADAM activity in hepatocellular carcinoma: a novel functional target for gefitinib. Cancer Sci 97(2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Mattes B, Scholpp S (2018) Emerging role of contact-mediated cell communication in tissue development and diseases. Histochem Cell Biol 150(5):431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLendon RE, Rich JN (2011) Glioblastoma stem cells: a neuropathologist’s view. J Oncol 2011:397195

    Article  PubMed  Google Scholar 

  • Mettang M, Meyer-Pannwitt V, Karpel-Massler G, Zhou S, Carragher NO, Föhr KJ (2018) Blocking distinct interactions between glioblastoma cells and their tissue microenvironment: a novel multi-targeted therapeutic approach. Sci Rep 8(1):5527

    Article  PubMed  PubMed Central  Google Scholar 

  • Monfared H, Jahangard Y, Nikkhah M, Mirnajafi-Zadeh J, Mowla SJ (2019) Potential therapeutic effects of exosomes packed with a miR-21-sponge construct in a rat model of glioblastoma. Front Oncol 9:782

    Article  PubMed  PubMed Central  Google Scholar 

  • Monga V, Jones K, Chang S (2017) Clinical relevance of molecular markers in gliomas. Revista Médica Clínica Las Condes 28(3):343–351

    Article  Google Scholar 

  • Monteiro AR, Hill R, Pilkington GJ, Madureira PA (2017) The role of hypoxia in glioblastoma invasion. Cells 6(4):45

    Article  PubMed  PubMed Central  Google Scholar 

  • Morantz RA, Wood GW, Foster M, Clark M, Gollahon K (1979) Macrophages in experimental and human brain tumors: part 2: studies of the macrophage content of human brain tumors. J Neurosurg 50(3):305–311

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Brandenburg S, Turkowski K, Müller S, Vajkoczy P (2015) Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int J Cancer 137(2):278–288

    Article  PubMed  Google Scholar 

  • Musumeci G, Magro G, Cardile V, Coco M, Marzagalli R, Castrogiovanni P et al (2015) Characterization of matrix metalloproteinase-2 and -9, ADAM-10 and N-cadherin expression in human glioblastoma multiforme. Cell Tissue Res 362(1):45–60

    Article  CAS  PubMed  Google Scholar 

  • Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z (2020) Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology 9(1):1779991

    Article  PubMed  PubMed Central  Google Scholar 

  • Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4):835–49.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen SR, Quaranta V, Linford A, Emeagi P, Rainer C, Santos A et al (2016) Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol 18(5):549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwani NG, Deguiz ML, Jimenez B, Vinokour E, Dubrovskyi O, Ugolkov A et al (2016) Melanoma cells block PEDF production in fibroblasts to induce the tumor-promoting phenotype of cancer-associated fibroblasts. Can Res 76(8):2265–2276

    Article  CAS  Google Scholar 

  • Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE et al (2011) Induction of CD8+ T-cell responses against novel glioma–associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29(3):330

    Article  CAS  PubMed  Google Scholar 

  • Okafo G, Prevedel L, Eugenin E (2017) Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread. Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  • Oliveira AI, Anjo SI, Vieira de Castro J, Serra SC, Salgado AJ, Manadas B et al (2017) Crosstalk between glial and glioblastoma cells triggers the “go-or-grow” phenotype of tumor cells. Cell Commun Signaling 15(1):1–12

    Article  Google Scholar 

  • Orrego E, Castaneda CA, Castillo M, Bernabe LA, Casavilca S, Chakravarti A et al (2018) Distribution of tumor-infiltrating immune cells in glioblastoma. CNS Oncol 7(4):Cns21

    Article  PubMed  PubMed Central  Google Scholar 

  • Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580):93–98

    Article  CAS  PubMed  Google Scholar 

  • Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53(3):176–186

    Article  PubMed  Google Scholar 

  • Park NI, Guilhamon P, Desai K, McAdam RF, Langille E, O’Connor M et al (2017) ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. Cell Stem Cell 21(2):209–24.e7

    Article  CAS  PubMed  Google Scholar 

  • ParvizHamidi M, Haddad G, Ostadrahimi S, Ostadrahimi N, Sadeghi S, Fayaz S et al (2019) Circulating miR-26a and miR-21 as biomarkers for glioblastoma multiform. Biotechnol Appl Biochem 66(2):261–265

    Article  CAS  PubMed  Google Scholar 

  • Pavlyukov MS, Yu H, Bastola S, Minata M, Shender VO, Lee Y et al (2018) Apoptotic cell-derived extracellular vesicles promote malignancy of glioblastoma via intercellular transfer of splicing factors. Cancer Cell 34(1):119–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson JR, Regad T (2017) Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2(1):1–11

    Google Scholar 

  • Peris-Bondia F, Latorre A, Artacho A, Moya A, D’Auria G (2011) The active human gut microbiota differs from the total microbiota. PLoS ONE 6(7):e22448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin SL, Samuel MS, Koszyca B, Brown MP, Ebert LM, Oksdath M et al (2019) Glioblastoma heterogeneity and the tumour microenvironment: implications for preclinical research and development of new treatments. Biochem Soc Trans 47(2):625–638

    Article  CAS  PubMed  Google Scholar 

  • Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL et al (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14(3):357–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto G, Brou C, Zurzolo C (2020) Tunneling nanotubes: the fuel of tumor progression? Trends Cancer 6(10):874–888

    Article  CAS  PubMed  Google Scholar 

  • Pirro V, Alfaro CM, Jarmusch AK, Hattab EM, Cohen-Gadol AA, Cooks RG (2017) Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. Proc Natl Acad Sci USA 114(26):6700–6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C et al (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28(5):851–862

    Article  CAS  PubMed  Google Scholar 

  • Placone AL, Quiñones-Hinojosa A, Searson PC (2016) The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumor Biology 37(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Ponte KF, Berro DH, Collet S, Constans JM, Emery E, Valable S et al (2017) In vivo relationship between hypoxia and angiogenesis in human glioblastoma: a multimodal imaging study. J Nucl Med 58(10):1574–1579

    Article  PubMed  Google Scholar 

  • Pope WB, Mirsadraei L, Lai A, Eskin A, Qiao J, Kim HJ et al (2012) Differential gene expression in glioblastoma defined by ADC histogram analysis: relationship to extracellular matrix molecules and survival. AJNR Am J Neuroradiol 33(6):1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portela M, Venkataramani V, Fahey-Lozano N, Seco E, Losada-Perez M, Winkler F et al (2019) Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLoS Biol 17(12):e3000545

    Article  PubMed  PubMed Central  Google Scholar 

  • Potthoff A-L, Heiland DH, Evert BO, Almeida FR, Behringer SP, Dolf A et al (2019) Inhibition of gap junctions sensitizes primary glioblastoma cells for temozolomide. Cancers 11(6):858

    Article  PubMed  PubMed Central  Google Scholar 

  • Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN (2020) Glioblastoma stem cells: driving resilience through chaos. Trends Cancer 6(3):223–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell JW, Tanlimco SG, Hickson J, Fox M, Sho M, Durkin L et al (2018) LRRC15 is a novel mesenchymal protein and stromal target for antibody–drug conjugates. Can Res 78(14):4059–4072

    Article  CAS  Google Scholar 

  • Puri RK (1999) Development of a recombinant interleukin-4-Pseudomonas exotoxin for therapy of glioblastoma. Toxicol Pathol 27(1):53–57

    Article  CAS  PubMed  Google Scholar 

  • Qian Z, Li Y, Ma J, Xue Y, Xi Y, Hong L et al (2018) Prognostic value of NUSAP1 in progression and expansion of glioblastoma multiforme. J Neurooncol 140(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • Qian M, Chen Z, Wang S, Guo X, Zhang Z, Qiu W et al (2019) PLEKHG5 is a novel prognostic biomarker in glioma patients. Int J Clin Oncol 24(11):1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Liu Z, Yang C, Gu L, Deng D (2016) SRF promotes gastric cancer metastasis through stromal fibroblasts in an SDF1-CXCR4-dependent manner. Oncotarget 7(29):46088

    Article  PubMed  PubMed Central  Google Scholar 

  • Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):aad3018

    Article  PubMed  PubMed Central  Google Scholar 

  • Rak J (2013) Extracellular vesicles–biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H et al (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4(3):eaar2766

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert SM, Sontheimer H (2014) Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 71(10):1839–1854

    Article  CAS  PubMed  Google Scholar 

  • Rolle CE, Sengupta S, Lesniak MS (2010) Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin 21(1):201–214

    Article  Google Scholar 

  • Rossi ML, Hughes JT, Esiri MM, Coakham HB, Brownell DB (1987) Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol 74(3):269–277

    Article  CAS  PubMed  Google Scholar 

  • Samaras V, Piperi C, Levidou G, Zisakis A, Kavantzas N, Themistocleous MS et al (2009) Analysis of interleukin (IL)-8 expression in human astrocytomas: associations with IL-6, cyclooxygenase-2, vascular endothelial growth factor, and microvessel morphometry. Hum Immunol 70(6):391–397

    Article  CAS  PubMed  Google Scholar 

  • Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai M (2018) Glioblastoma: microenvironment and niche concept. Cancers 11(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Sciumè G, Santoni A, Bernardini G (2010) Chemokines and glioma: invasion and more. J Neuroimmunol 224(1–2):8–12

    Article  PubMed  Google Scholar 

  • Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Can Res 63(20):6962–6970

    CAS  Google Scholar 

  • Sin W-C, Crespin S, Mesnil M (2012) Opposing roles of connexin43 in glioma progression. Biochimica Et Biophysica Acta (BBA) 1818(8):2058–2067

    Article  CAS  PubMed  Google Scholar 

  • Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC (2016) Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene 35(12):1504–1516

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  • Skiriute D, Stakaitis R, Steponaitis G, Tamasauskas A, Vaitkiene P (2020) The role of CASC2 and miR-21 interplay in glioma malignancy and patient outcome. Int J Mol Sci 21(21):7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skog J, Würdinger T, Van Rijn S, Meijer DH, Gainche L, Curry WT et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söhl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6(3):191–200

    Article  PubMed  Google Scholar 

  • Soroceanu L, Manning TJ Jr, Sontheimer H (2001) Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33(2):107–117

    Article  CAS  PubMed  Google Scholar 

  • Spalding K, Board R, Dawson T, Jenkinson MD, Baker MJ (2016) A review of novel analytical diagnostics for liquid biopsies: spectroscopic and spectrometric serum profiling of primary and secondary brain tumors. Brain Behav 6(9):e00502

    Article  PubMed  PubMed Central  Google Scholar 

  • Stummer W, Meinel T, Ewelt C, Martus P, Jakobs O, Felsberg J et al (2012) Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J Neurooncol 108(1):89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunagozaka H, Honda M, Yamashita T, Nishino R, Takatori H, Arai K et al (2011) Identification of a secretory protein c19orf10 activated in hepatocellular carcinoma. Int J Cancer 129(7):1576–1585

    Article  CAS  PubMed  Google Scholar 

  • Swellam M, Ezz El Arab L, Al-Posttany AS, Said BS (2019) Clinical impact of circulating oncogenic MiRNA-221 and MiRNA-222 in glioblastoma multiform. J Neuro-oncology. 144(3):545–551

  • Tan SK, Pastori C, Penas C, Komotar RJ, Ivan ME, Wahlestedt C et al (2018) Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer 17(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomark Prev 23(10):1985–1996

    Article  CAS  Google Scholar 

  • Tian Y, Zheng Y, Dong X (2019) AGAP2-AS1 serves as an oncogenic lncRNA and prognostic biomarker in glioblastoma multiforme. J Cell Biochem 120(6):9056–9062

    Article  CAS  PubMed  Google Scholar 

  • Tomaszewski W, Sanchez-Perez L, Gajewski TF, Sampson JH (2019) Brain tumor microenvironment and host state: implications for immunotherapy. Clin Cancer Res 25(14):4202–4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O (2015) Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Touat M, Duran-Peña A, Alentorn A, Lacroix L, Massard C, Idbaih A (2015) Emerging circulating biomarkers in glioblastoma: promises and challenges. Expert Rev Mol Diagn 15(10):1311–1323

    Article  CAS  PubMed  Google Scholar 

  • Treps L, Perret R, Edmond S, Ricard D, Gavard J (2017) Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles 6(1):1359479

    Article  PubMed  PubMed Central  Google Scholar 

  • Turturici G, Tinnirello R, Sconzo G, Geraci F (2014) Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 306(7):C621–C633

    Article  CAS  PubMed  Google Scholar 

  • Uribe D, Torres Á, Rocha JD, Niechi I, Oyarzún C, Sobrevia L et al (2017) Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Mol Aspects Med 55:140–151

    Article  CAS  PubMed  Google Scholar 

  • Valdebenito S, Audia A, Bhat KP, Okafo G, Eugenin EA (2020) Tunneling nanotubes mediate adaptation of glioblastoma cells to temozolomide and ionizing radiation treatment. Iscience 23(9):101450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valkenburg KC, de Groot AE, Pienta KJ (2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15(6):366–381

    Article  PubMed  PubMed Central  Google Scholar 

  • van Noorden CJ, Hira VV, van Dijck AJ, Novak M, Breznik B, Molenaar RJ (2021) Energy metabolism in IDH1 wild-type and IDH1-mutated glioblastoma stem cells: a novel target for therapy? Cells 10(3):705

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatesh VS, Lou E (2019) Tunneling nanotubes: a bridge for heterogeneity in glioblastoma and a new therapeutic target? Cancer Rep 2(6):e1185

    Google Scholar 

  • Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S et al (2015) Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161(4):803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H (2014) Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 5:4196

    Article  CAS  PubMed  Google Scholar 

  • Weissenberger J, Loeffler S, Kappeler A, Kopf M, Lukes A, Afanasieva TA et al (2004) IL-6 is required for glioma development in a mouse model. Oncogene 23(19):3308–3316

    Article  CAS  PubMed  Google Scholar 

  • Willms E, Cabañas C, Mäger I, Wood MJ, Vader P (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 9:738

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335(1):75–96

    Article  PubMed  Google Scholar 

  • Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 33(5–6):579–589

    Article  CAS  PubMed  Google Scholar 

  • Wong KK, Rostomily R, Wong STC (2019) Prognostic gene discovery in glioblastoma patients using deep learning. Cancers 11(1):53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K et al (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488(7412):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X et al (2017) IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8(13):20741

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Zhu Z, Li J, Yao J, Jiang H, Ran R et al (2020) Expression and prognostic value of long non-coding RNA H19 in glioma via integrated bioinformatics analyses. Aging 12(4):3407–3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Feng J, Fienberg AA, Greengard P (1999) D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci USA 96(20):11607–11612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang I, Tihan T, Han SJ, Wrensch MR, Wiencke J, Sughrue ME et al (2010) CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci 17(11):1381–1385

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Lu H, Luo F, Zhang Z, Wu W (2020) Increased expression of GRP78 correlates with adverse outcome in recurrent glioblastoma multiforme patients. Turk Neurosurg 30(1):557–564

    PubMed  Google Scholar 

  • Yekula A, Yekula A, Muralidharan K, Kang K, Carter BS, Balaj L (2019) Extracellular vesicles in glioblastoma tumor microenvironment. Front Immunol 10:3137

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23(58):9392–9400

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang Y (2015) Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci Bull 31(3):371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Song T, Yang L, Chen R, Wu L, Yang Z et al (2008) Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res 27(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu VF, Yang J, LeBrun DG, Li M (2012) Understanding the role of cytokines in Glioblastoma Multiforme pathogenesis. Cancer Lett 316(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Carney KE, Pigott VM, Falgoust LM, Clark PA, Kuo JS et al (2016) Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1. Carcinogenesis 37(9):839–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzaei.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisakht, A.K., Malekan, M., Ghobadinezhad, F. et al. Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment. Cell Mol Neurobiol 43, 585–603 (2023). https://doi.org/10.1007/s10571-022-01212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-022-01212-9

Keywords

Navigation