Skip to main content

Advertisement

Log in

Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Myeloid cells are an essential part of the glioblastoma microenvironment. However, in brain tumors the function of these immune cells is not sufficiently clarified. In our study, we investigated differential pro-angiogenic activities of resident microglia and peripheral macrophages and their impact on glioma vascularization and progression. Our data demonstrate stable accumulation of microglia/macrophages during tumor growth. These cells often interact with tumor blood vessels correlating with vascular remodeling. Here, we identified resident microglia as well as peripheral macrophages as part of the perivascular niche, primarily contacting endothelial cells. We found overexpression of a variety of pro-angiogenic molecules within freshly isolated microglia/macrophages from glioma. CXCL2, until now a poorly described chemokine, was strongly up-regulated and showed better angiogenic activity than VEGF in vitro. Blocking the CXCL2-CXCR2 signaling pathway resulted in considerably diminished glioma sizes. Additionally, the importance of microglia/macrophages in tumor angiogenesis was confirmed by depletion of these cells in vivo. Vessel density decreased by 50 % leading to significantly smaller tumor volumes. Remarkably, selective reduction of resident microglia affected tumoral vessel count comparable to ablation of the whole myeloid cell fraction. These results provide evidence that resident microglia are the crucial modulatory cell population playing a central role in regulation of vascular homeostasis and angiogenesis in brain tumors. Thus, resident microglia represent an alternative source of pro-angiogenic growth factors and cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acker T, Plate KH (2003) Role of hypoxia in tumor angiogenesis-molecular and cellular angiogenic crosstalk. Cell Tissue Res 314:145–155

    Article  CAS  PubMed  Google Scholar 

  2. Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD (2009) Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18:1061–1083

    Article  CAS  PubMed  Google Scholar 

  3. Badie B, Schartner J (2001) Role of microglia in glioma biology. Microsc Res Tech 54:106–113

    Article  CAS  PubMed  Google Scholar 

  4. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  CAS  PubMed  Google Scholar 

  5. Batchelor TT, Sorensen AG, di TE, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

  6. Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14:1651–1658

    Article  CAS  PubMed  Google Scholar 

  7. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    CAS  PubMed  Google Scholar 

  8. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M (2003) Analysis of the role of chemokines in angiogenesis. J Immunol Methods 273:83–101

    Article  CAS  PubMed  Google Scholar 

  10. Bessis A, Bechade C, Bernard D, Roumier A (2007) Microglial control of neuronal death and synaptic properties. Glia 55:233–238

    Article  PubMed  Google Scholar 

  11. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Brockington A, Lewis C, Wharton S, Shaw PJ (2004) Vascular endothelial growth factor and the nervous system. Neuropathol Appl Neurobiol 30:427–446

    Article  CAS  PubMed  Google Scholar 

  13. Bruyere C, Mijatovic T, Lonez C, Spiegl-Kreinecker S, Berger W, Kast RE, Ruysschaert JM, Kiss R, Lefranc F (2011) Temozolomide-induced modification of the CXC chemokine network in experimental gliomas. Int J Oncol 38:1453–1464

    CAS  PubMed  Google Scholar 

  14. Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE (2002) Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 196:204–212

    Article  CAS  PubMed  Google Scholar 

  15. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  CAS  PubMed  Google Scholar 

  16. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  CAS  PubMed  Google Scholar 

  17. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59:1169–1180

    Article  PubMed  Google Scholar 

  18. Cloughesy TF, Wen PY, Robins HI, Chang SM, Groves MD, Fink KL, Junck L, Schiff D, Abrey L, Gilbert MR, Lieberman F, Kuhn J, DeAngelis LM, Mehta M, Raizer JJ, Yung WK, Aldape K, Wright J, Lamborn KR, Prados MD (2006) Phase II trial of tipifarnib in patients with recurrent malignant glioma either receiving or not receiving enzyme-inducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J Clin Oncol 24:3651–3656

    Article  CAS  PubMed  Google Scholar 

  19. Gerber PA, Hippe A, Buhren BA, Muller A, Homey B (2009) Chemokines in tumor-associated angiogenesis. Biol Chem 390:1213–1223

    Article  CAS  PubMed  Google Scholar 

  20. Gerstner ER, Batchelor TT (2012) Antiangiogenic therapy for glioblastoma. Cancer J 18:45–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hamada I, Kato M, Yamasaki T, Iwabuchi K, Watanabe T, Yamada T, Itoyama S, Ito H, Okada K (2002) Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res 22:4281–4284

    PubMed  Google Scholar 

  22. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  23. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  24. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Henriquet C, Gougat C, Combes A, Lazennec G, Mathieu M (2007) Differential regulation of RANTES and IL-8 expression in lung adenocarcinoma cells. Lung Cancer 56:167–174

    Article  PubMed Central  PubMed  Google Scholar 

  26. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    Article  CAS  PubMed  Google Scholar 

  27. Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T, Fukumura D, Jain RK (2011) C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci USA 108:302–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hong TM, Teng LJ, Shun CT, Peng MC, Tsai JC (2009) Induced interleukin-8 expression in gliomas by tumor-associated macrophages. J Neurooncol 93:289–301

    Article  CAS  PubMed  Google Scholar 

  29. Jablonska J, Wu CF, Andzinski L, Leschner S, Weiss S (2014) CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-beta. Int J Cancer 134:1346–1358

    Article  CAS  PubMed  Google Scholar 

  30. Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192:150–158

    Article  CAS  PubMed  Google Scholar 

  31. Loges S, Schmidt T, Carmeliet P (2010) Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer 1:12–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H (2005) Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64:754–762

    Article  CAS  PubMed  Google Scholar 

  33. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kalin R, van Rooijen N, Holmbeck K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass R, Kettenmann H (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA 106:12530–12535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    Article  PubMed Central  PubMed  Google Scholar 

  35. Muller A, Brandenburg S, Turkowski K, Muller S, Vajkoczy P (2014) Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int J Cancer 137:278–288

    Article  PubMed  Google Scholar 

  36. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  CAS  PubMed  Google Scholar 

  37. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113

    CAS  PubMed  Google Scholar 

  38. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Owens T, Bechmann I, Engelhardt B (2008) Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol 67:1113–1121

    Article  PubMed  Google Scholar 

  40. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14:1379–1392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124:763–775

    Article  PubMed Central  PubMed  Google Scholar 

  42. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92:288–293

    Article  CAS  PubMed  Google Scholar 

  44. Sliwa M, Markovic D, Gabrusiewicz K, Synowitz M, Glass R, Zawadzka M, Wesolowska A, Kettenmann H, Kaminska B (2007) The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain 130:476–489

    Article  PubMed  Google Scholar 

  45. Staples KJ, Sotoodehnejadnematalahi F, Pearson H, Frankenberger M, Francescut L, Ziegler-Heitbrock L, Burke B (2011) Monocyte-derived macrophages matured under prolonged hypoxia transcriptionally up-regulate HIF-1alpha mRNA. Immunobiology 216:832–839

    Article  CAS  PubMed  Google Scholar 

  46. Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995) The role of CXC chemokines as regulators of angiogenesis. Shock 4:155–160

    Article  CAS  PubMed  Google Scholar 

  47. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van DJ, Walz A, Marriott D (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357

    Article  CAS  PubMed  Google Scholar 

  48. Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S (2005) Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 14:425–431

    CAS  PubMed  Google Scholar 

  49. Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD (1998) Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 18:510–520

    Article  CAS  PubMed  Google Scholar 

  50. Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447–455

    Article  CAS  PubMed  Google Scholar 

  51. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  CAS  PubMed  Google Scholar 

  52. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  53. Werno C, Menrad H, Weigert A, Dehne N, Goerdt S, Schledzewski K, Kzhyshkowska J, Brune B (2010) Knockout of HIF-1alpha in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis 31:1863–1872

    Article  CAS  PubMed  Google Scholar 

  54. Williams RL, Risau W, Zerwes HG, Drexler H, Aguzzi A, Wagner EF (1989) Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell 57:1053–1063

    Article  CAS  PubMed  Google Scholar 

  55. Zhai H, Heppner FL, Tsirka SE (2011) Microglia/macrophages promote glioma progression. Glia 59:472–485

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jana Glumm and Martin Pohland for the kind supply of the C57BL6/J-TgN(beta-act-EGFP) mice. We especially thank Thomas Broggini for providing the bEnd.4 cell line. Additionally, we thank Susanne Müller for her assistance in MRI measurement and analyses. This work was supported by the German Research Foundation (DFG, SPP1190) and SFB TRR43. A. Müller was funded by a doctoral scholarship from Sonnenfeld foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vajkoczy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by the German Research Foundation (DFG, SPP1190) and SFB TRR43. A. Müller was funded by a doctoral scholarship from Sonnenfeld foundation.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandenburg, S., Müller, A., Turkowski, K. et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol 131, 365–378 (2016). https://doi.org/10.1007/s00401-015-1529-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1529-6

Keywords

Navigation