Skip to main content
Log in

Glutamate transporters in the biology of malignant gliomas

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Malignant gliomas are relentless tumors that offer a dismal clinical prognosis. They develop many biological advantages that allow them to grow and survive in the unique environment of the brain. The glutamate transporters system x c and excitatory amino acid transporters (EAAT) are emerging as key players in the biology and malignancy of these tumors. Gliomas manipulate glutamate transporter expression and function to alter glutamate homeostasis in the brain, which supports their own growth, invasion, and survival. As a consequence, malignant cells are able to quickly destroy and invade surrounding normal brain. Recent findings are painting a larger picture of these transporters in glioma biology, and as such are providing opportunities for clinical intervention for patients. This review will detail the current understanding of glutamate transporters in the biology of malignant gliomas and highlight some of the unique aspects of these tumors that make them so devastating and difficult to treat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-oncology 14(Suppl 5):v1–v49. doi:10.1093/neuonc/nos218

    PubMed Central  PubMed  Google Scholar 

  2. Porter KR, McCarthy BJ, Freels S, Kim Y, Davis FG (2010) Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology. Neuro-oncology 12(6):520–527. doi:10.1093/neuonc/nop066

    PubMed Central  PubMed  Google Scholar 

  3. Preusser M, de Ribaupierre S, Wohrer A, Erridge SC, Hegi M, Weller M, Stupp R (2011) Current concepts and management of glioblastoma. Ann Neurol 70(1):9–21. doi:10.1002/ana.22425

    PubMed  Google Scholar 

  4. Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD (2009) Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18(8):1061–1083. doi:10.1517/13543780903052764

    PubMed  CAS  Google Scholar 

  5. Chamberlain MC, Kormanik PA (1998) Practical guidelines for the treatment of malignant gliomas. West J Med 168(2):114–120

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Ruban A, Berkutzki T, Cooper I, Mohar B, Teichberg VI (2012) Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas. Invest New Drugs. doi:10.1007/s10637-012-9794-x

    PubMed Central  Google Scholar 

  7. Chung WJ, Sontheimer H (2009) Sulfasalazine inhibits the growth of primary brain tumors independent of nuclear factor-kappaB. J Neurochem 110(1):182–193. doi:10.1111/j.1471-4159.2009.06129.x

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Chen RS, Song YM, Zhou ZY, Tong T, Li Y, Fu M, Guo XL, Dong LJ, He X, Qiao HX, Zhan QM, Li W (2009) Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/beta-catenin pathway. Oncogene 28(4):599–609. doi:10.1038/onc.2008.414

    PubMed  CAS  Google Scholar 

  9. Piao Y, Lu L, de Groot J (2009) AMPA receptors promote perivascular glioma invasion via beta1 integrin-dependent adhesion to the extracellular matrix. Neuro-oncology 11(3):260–273. doi:10.1215/15228517-2008-094

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 67(19):9463–9471. doi:10.1158/0008-5472.CAN-07-2034

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Takeuchi S, Wada K, Toyooka T, Shinomiya N, Shimazaki H, Nakanishi K, Nagatani K, Otani N, Osada H, Uozumi Y, Matsuo H, Nawashiro H (2013) Increased xCT expression correlates with tumor invasion and outcome in patients with glioblastomas. Neurosurgery 72(1):33–41. doi:10.1227/NEU.0b013e318276b2de (discussion 41)

    PubMed  Google Scholar 

  12. Yuen TI, Morokoff AP, Bjorksten A, D’Abaco G, Paradiso L, Finch S, Wong D, Reid CA, Powell KL, Drummond KJ, Rosenthal MA, Kaye AH, O’Brien TJ (2012) Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology 79(9):883–889. doi:10.1212/WNL.0b013e318266fa89

    PubMed  CAS  Google Scholar 

  13. Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, Sontheimer H (2011) Glutamate release by primary brain tumors induces epileptic activity. Nat Med 17(10):1269–1274. doi:10.1038/nm.2453

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Chen J, McKay RM, Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149(1):36–47. doi:10.1016/j.cell.2012.03.009

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12(9):495–508. doi:10.1038/nrn3060

    PubMed  CAS  Google Scholar 

  16. Ernest NJ, Sontheimer H (2009) Glioma. In: Editor-in-Chief: Larry RS (ed) Encyclopedia of neuroscience, vol 4. Academic, Oxford, pp 877–884. doi:http://dx.doi.org/10.1016/B978-008045046-9.09007-0

  17. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    PubMed Central  PubMed  Google Scholar 

  18. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    PubMed  CAS  Google Scholar 

  19. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi:10.1056/NEJMra0708126

    PubMed  CAS  Google Scholar 

  20. Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375(6533):645–653. doi:10.1038/375645a0

    PubMed  CAS  Google Scholar 

  21. Augustine GJ, Burns ME, DeBello WM, Pettit DL, Schweizer FE (1996) Exocytosis: proteins and perturbations. Annu Rev Pharmacol Toxicol 36:659–701. doi:10.1146/annurev.pa.36.040196.003303

    PubMed  CAS  Google Scholar 

  22. Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405(6783):187–191. doi:10.1038/35012083

    PubMed  CAS  Google Scholar 

  23. Seifert G, Steinhauser C (2001) Ionotropic glutamate receptors in astrocytes. Prog Brain Res 132:287–299. doi:10.1016/s0079-6123(01)32083-6

    PubMed  CAS  Google Scholar 

  24. Teichberg VI (1991) Glial glutamate receptors: likely actors in brain signaling. FASEB J 5(15):3086–3091

    PubMed  CAS  Google Scholar 

  25. Steinhauser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19(8):339–345

    PubMed  CAS  Google Scholar 

  26. Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ (2010) Characterisation of the expression of NMDA receptors in human astrocytes. PLoS ONE 5(11):e14123. doi:10.1371/journal.pone.0014123

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Murugan M, Ling EA, Kaur C (2013) Glutamate receptors in microglia. CNS Neurol Disord Drug Targets 12(6):773–784

    PubMed  CAS  Google Scholar 

  28. Flores-Mendez MA, Martinez-Lozada Z, Monroy HC, Hernandez-Kelly LC, Barrera I, Ortega A (2013) Glutamate-dependent translational control in cultured Bergmann glia cells: eIF2alpha phosphorylation. Neurochem Res 38(7):1324–1332. doi:10.1007/s11064-013-1024-1

    PubMed  CAS  Google Scholar 

  29. Jansson LC, Louhivuori L, Wigren HK, Nordstrom T, Louhivuori V, Castren ML, Akerman KE (2013) Effect of glutamate receptor antagonists on migrating neural progenitor cells. Eur J Neurosci 37(9):1369–1382. doi:10.1111/ejn.12152

    PubMed  Google Scholar 

  30. Renzel R, Sadek AR, Chang CH, Gray WP, Seifert G, Steinhauser C (2013) Polarized distribution of AMPA, but not GABAA, receptors in radial glia-like cells of the adult dentate gyrus. Glia 61(7):1146–1154. doi:10.1002/glia.22505

    PubMed  Google Scholar 

  31. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108. doi:10.1146/annurev.ne.17.030194.000335

    PubMed  CAS  Google Scholar 

  32. Prickett TD, Samuels Y (2012) Molecular pathways: dysregulated glutamatergic signaling pathways in cancer. Clin Cancer Res 18(16):4240–4246. doi:10.1158/1078-0432.CCR-11-1217

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    PubMed  CAS  Google Scholar 

  34. Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13(5):1031–1037

    PubMed  CAS  Google Scholar 

  35. Tang CM, Dichter M, Morad M (1989) Quisqualate activates a rapidly inactivating high conductance ionic channel in hippocampal neurons. Science 243(4897):1474–1477

    PubMed  CAS  Google Scholar 

  36. de Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59(8):1181–1189. doi:10.1002/glia.21113

    PubMed Central  PubMed  Google Scholar 

  37. Hardingham GE (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 37(Pt 6):1147–1160. doi:10.1042/BST0371147

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Rojas A, Dingledine R (2013) Ionotropic glutamate receptors: regulation by G-protein-coupled receptors. Mol Pharmacol 83(4):746–752. doi:10.1124/mol.112.083352

    PubMed  CAS  Google Scholar 

  39. Leonard AS, Lim IA, Hemsworth DE, Horne MC, Hell JW (1999) Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 96(6):3239–3244

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Kim DY, Kim SH, Choi HB, Min C, Gwag BJ (2001) High abundance of GluR1 mRNA and reduced Q/R editing of GluR2 mRNA in individual NADPH-diaphorase neurons. Mol Cell Neurosci 17(6):1025–1033. doi:10.1006/mcne.2001.0988

    PubMed  CAS  Google Scholar 

  41. Isaac JT, Ashby MC, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54(6):859–871. doi:10.1016/j.neuron.2007.06.001

    PubMed  CAS  Google Scholar 

  42. Pisani A, Gubellini P, Bonsi P, Conquet F, Picconi B, Centonze D, Bernardi G, Calabresi P (2001) Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-d-aspartate responses in medium spiny striatal neurons. Neuroscience 106(3):579–587

    PubMed  CAS  Google Scholar 

  43. Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74(5):271–300. doi:10.1016/j.pneurobio.2004.09.005

    PubMed  CAS  Google Scholar 

  44. Pisani A, Calabresi P, Centonze D, Bernardi G (1997) Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br J Pharmacol 120(6):1007–1014. doi:10.1038/sj.bjp.0700999

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Bonsi P, Cuomo D, De Persis C, Centonze D, Bernardi G, Calabresi P, Pisani A (2005) Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons. Neuropharmacology 49(Suppl 1):104–113. doi:10.1016/j.neuropharm.2005.05.012

    PubMed  CAS  Google Scholar 

  46. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19(6):1297–1308

    PubMed  CAS  Google Scholar 

  47. Berger T, Schnitzer J, Kettenmann H (1991) Developmental changes in the membrane current pattern, K+ buffer capacity, and morphology of glial cells in the corpus callosum slice. J Neurosci 11:3008–3024

    PubMed  CAS  Google Scholar 

  48. Berger UV, DeSilva TM, Chen W, Rosenberg PA (2005) Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol 492(1):78–89. doi:10.1002/cne.20737

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, Irwin N, Aoki C, Rosenberg PA (2004) The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24(5):1136–1148. doi:10.1523/jneurosci.1586-03.2004

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32(17):6000–6013. doi:10.1523/jneurosci.5347-11.2012

    PubMed  CAS  Google Scholar 

  51. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18(10):3606–3619

    PubMed  CAS  Google Scholar 

  52. Massie A, Vandesande F, Arckens L (2001) Expression of the high-affinity glutamate transporter EAAT4 in mammalian cerebral cortex. Neuroreport 12(2):393–397

    PubMed  CAS  Google Scholar 

  53. de Vivo L, Melone M, Bucci G, Rothstein JD, Conti F (2010) Quantitative analysis of EAAT4 promoter activity in neurons and astrocytes of mouse somatic sensory cortex. Neurosci Lett 474(1):42–45. doi:10.1016/j.neulet.2010.03.003

    PubMed  Google Scholar 

  54. Lee A, Anderson AR, Barnett NL, Stevens MG, Pow DV (2012) Alternate splicing and expression of the glutamate transporter EAAT5 in the rat retina. Gene 506(2):283–288. doi:10.1016/j.gene.2012.07.010

    PubMed  CAS  Google Scholar 

  55. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94(8):4155–4160

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Lee A, Anderson AR, Stevens M, Beasley S, Barnett NL, Pow DV (2013) Excitatory amino acid transporter 5 is widely expressed in peripheral tissues. Eur J Histochem 57(1):e11. doi:10.4081/ejh.2013.e11

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15(3 Pt 1):1835–1853

    PubMed  CAS  Google Scholar 

  58. Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na+ + K+] coupled l-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51(2):295–310

    PubMed  CAS  Google Scholar 

  59. Levy LM, Lehre KP, Rolstad B, Danbolt NC (1993) A monoclonal antibody raised against an [Na(+) + K+]coupled l-glutamate transporter purified from rat brain confirms glial cell localization. FEBS Lett 317(1–2):79–84

    PubMed  CAS  Google Scholar 

  60. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt NC (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157(1):80–94. doi:10.1016/j.neuroscience.2008.08.043

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9(1):119–126. doi:10.1038/nn1609

    PubMed  CAS  Google Scholar 

  62. Danbolt NC, Pines G, Kanner BI (1990) Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29(28):6734–6740

    PubMed  CAS  Google Scholar 

  63. Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honore T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271(44):27715–27722

    PubMed  CAS  Google Scholar 

  64. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    PubMed  CAS  Google Scholar 

  65. Gochenauer GE, Robinson MB (2001) Dibutyryl-cAMP (dbcAMP) up-regulates astrocytic chloride-dependent l-[3H]glutamate transport and expression of both system xc(-) subunits. J Neurochem 78(2):276–286

    PubMed  CAS  Google Scholar 

  66. Burdo J, Dargusch R, Schubert D (2006) Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum. J Histochem Cytochem 54(5):549–557. doi:10.1369/jhc.5A6840.2006

    PubMed  CAS  Google Scholar 

  67. Piani D, Fontana A (1994) Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol (Baltim Md: 1950) 152(7):3578–3585

    CAS  Google Scholar 

  68. Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J 4(6):1624–1633

    PubMed  CAS  Google Scholar 

  69. Massie A, Schallier A, Mertens B, Vermoesen K, Bannai S, Sato H, Smolders I, Michotte Y (2008) Time-dependent changes in striatal xCT protein expression in hemi-Parkinson rats. Neuroreport 19(16):1589–1592. doi:10.1097/WNR.0b013e328312181c

    PubMed  CAS  Google Scholar 

  70. Pow DV (2001) Visualising the activity of the cystine–glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 34(1):27–38

    PubMed  CAS  Google Scholar 

  71. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18(5):522–555. doi:10.1089/ars.2011.4391

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261(5):2256–2263

    PubMed  CAS  Google Scholar 

  73. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458

    PubMed  CAS  Google Scholar 

  74. Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61(5):1672–1676

    PubMed  CAS  Google Scholar 

  75. Watanabe H, Bannai S (1987) Induction of cystine transport activity in mouse peritoneal macrophages. J Exp Med 165(3):628–640

    PubMed  CAS  Google Scholar 

  76. Deneke SM, Fanburg BL (1989) Regulation of cellular glutathione. Am J Physiol 257(4 Pt 1):L163–L173

    PubMed  CAS  Google Scholar 

  77. Lo M, Wang YZ, Gout PW (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215(3):593–602. doi:10.1002/jcp.21366

    PubMed  CAS  Google Scholar 

  78. Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26(41):10514–10523. doi:10.1523/jneurosci.3178-06.2006

    PubMed  CAS  Google Scholar 

  79. Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, Takahashi S, Bannai S (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280(45):37423–37429. doi:10.1074/jbc.M506439200

    PubMed  CAS  Google Scholar 

  80. Ogunrinu TA, Sontheimer H (2010) Hypoxia increases the dependence of glioma cells on glutathione. J Biol Chem 285(48):37716–37724. doi:10.1074/jbc.M110.161190

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263(33):17205–17208

    PubMed  CAS  Google Scholar 

  82. Singh S, Khan AR, Gupta AK (2012) Role of glutathione in cancer pathophysiology and therapeutic interventions. J Exp Ther Oncol 9(4):303–316

    PubMed  CAS  Google Scholar 

  83. Benjamin AM, Quastel JH (1975) Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: a possible role of ammonia in brain function. J Neurochem 25(3):197–206

    PubMed  CAS  Google Scholar 

  84. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195(4284):1356–1358

    PubMed  CAS  Google Scholar 

  85. Chaudhry FA, Reimer RJ, Edwards RH (2002) The glutamine commute: take the N line and transfer to the A. J Cell Biol 157(3):349–355. doi:10.1083/jcb.200201070

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Jenstad M, Quazi AZ, Zilberter M, Haglerod C, Berghuis P, Saddique N, Goiny M, Buntup D, Davanger S, S Haug FM , Barnes CA, McNaughton BL, Ottersen OP, Storm-Mathisen J, Harkany T, Chaudhry FA (2009) System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. Cereb Cortex 19(5):1092–1106. doi:10.1093/cercor/bhn151

    PubMed  Google Scholar 

  87. Kvamme E, Torgner IA, Roberg B (2001) Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 66(5):951–958

    PubMed  CAS  Google Scholar 

  88. Svenneby G (1970) Pig brain glutaminase: purification and identification of different enzyme forms. J Neurochem 17(11):1591–1599

    PubMed  CAS  Google Scholar 

  89. Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18(21):8648–8659

    PubMed  CAS  Google Scholar 

  90. Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31(2):247–260

    PubMed  CAS  Google Scholar 

  91. Nakanishi T, Sugawara M, Huang W, Martindale RG, Leibach FH, Ganapathy ME, Prasad PD, Ganapathy V (2001) Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N. Biochem Biophys Res Commun 281(5):1343–1348. doi:10.1006/bbrc.2001.4504

    PubMed  CAS  Google Scholar 

  92. Cubelos B, Gonzalez-Gonzalez IM, Gimenez C, Zafra F (2005) Amino acid transporter SNAT5 localizes to glial cells in the rat brain. Glia 49(2):230–244. doi:10.1002/glia.20106

    PubMed  Google Scholar 

  93. Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99(7):769–780

    PubMed  CAS  Google Scholar 

  94. Boulland JL, Osen KK, Levy LM, Danbolt NC, Edwards RH, Storm-Mathisen J, Chaudhry FA (2002) Cell-specific expression of the glutamine transporter SN1 suggests differences in dependence on the glutamine cycle. Eur J Neurosci 15(10):1615–1631

    PubMed  Google Scholar 

  95. Boulland JL, Rafiki A, Levy LM, Storm-Mathisen J, Chaudhry FA (2003) Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia 41(3):260–275. doi:10.1002/glia.10188

    PubMed  Google Scholar 

  96. Martinez-Lozada Z, Guillem AM, Flores-Mendez M, Hernandez-Kelly LC, Vela C, Meza E, Zepeda RC, Caba M, Rodriguez A, Ortega A (2013) GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling. J Neurochem 125(4):545–554. doi:10.1111/jnc.12211

    PubMed  CAS  Google Scholar 

  97. Nissen-Meyer LS, Popescu MC, el Hamdani H, Chaudhry FA (2011) Protein kinase C-mediated phosphorylation of a single serine residue on the rat glial glutamine transporter SN1 governs its membrane trafficking. J Neurosci 31(17):6565–6575. doi:10.1523/jneurosci.3694-10.2011

    PubMed  CAS  Google Scholar 

  98. Nissen-Meyer LS, Chaudhry FA (2013) Protein kinase C phosphorylates the system N glutamine transporter SN1 (Slc38a3) and regulates its membrane trafficking and degradation. Front Endocrinol 4:138. doi:10.3389/fendo.2013.00138

    Google Scholar 

  99. Broer A, Deitmer JW, Broer S (2004) Astroglial glutamine transport by system N is upregulated by glutamate. Glia 48(4):298–310. doi:10.1002/glia.20081

    PubMed  Google Scholar 

  100. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60(8):1215–1226. doi:10.1002/glia.22341

    PubMed Central  PubMed  Google Scholar 

  101. Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, Aschner M (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6(4):263–276. doi:10.1017/s1740925x11000093

    PubMed  Google Scholar 

  102. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8):623–634

    PubMed  CAS  Google Scholar 

  103. Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11(11):462–468

    PubMed  Google Scholar 

  104. Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27(36):9736–9741. doi:10.1523/jneurosci.3009-07.2007

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gahwiler BH, Gerber U (1999) Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci USA 96(15):8733–8738

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23(9):1261–1276. doi:10.1002/neu.480230915

    PubMed  CAS  Google Scholar 

  107. Fujikawa DG (2005) Prolonged seizures and cellular injury: understanding the connection. Epilepsy behav 7(Suppl 3):S3–S11. doi:10.1016/j.yebeh.2005.08.003

    PubMed  Google Scholar 

  108. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann NY Acad Sci 1144:97–112. doi:10.1196/annals.1418.005

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Torp R, Arvin B, Le Peillet E, Chapman AG, Ottersen OP, Meldrum BS (1993) Effect of ischaemia and reperfusion on the extra- and intracellular distribution of glutamate, glutamine, aspartate and GABA in the rat hippocampus, with a note on the effect of the sodium channel blocker BW1003C87. Exp Brain Res 96(3):365–376

    PubMed  CAS  Google Scholar 

  110. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    PubMed  CAS  Google Scholar 

  111. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43(5):1369–1374

    PubMed  CAS  Google Scholar 

  112. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403(6767):316–321. doi:10.1038/35002090

    PubMed  CAS  Google Scholar 

  113. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493. doi:10.1002/jcp.22609

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Watkins S, Sontheimer H (2012) Unique biology of gliomas: challenges and opportunities. Trends Neurosci 35(9):546–556. doi:10.1016/j.tins.2012.05.001

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY, Sontheimer H (2005) Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 25(31):7101–7110. doi:10.1523/JNEUROSCI.5258-04.2005

    PubMed Central  PubMed  CAS  Google Scholar 

  116. de Groot JF, Liu TJ, Fuller G, Yung WK (2005) The excitatory amino acid transporter-2 induces apoptosis and decreases glioma growth in vitro and in vivo. Cancer Res 65(5):1934–1940. doi:10.1158/0008-5472.CAN-04-3626

    PubMed  Google Scholar 

  117. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59(17):4383–4391

    PubMed  CAS  Google Scholar 

  118. Dunlop J, Lou Z, McIlvain HB (1999) Properties of excitatory amino acid transport in the human U373 astrocytoma cell line. Brain Res 839(2):235–242

    PubMed  CAS  Google Scholar 

  119. Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine–glutamate exchange. J Neurosci 19(24):10767–10777

    PubMed  CAS  Google Scholar 

  120. Jimenez AL, Chou AH, Khadadadi O, Palos TP, Howard BD (2003) Wnt-1 has multiple effects on the expression of glutamate transporters. Neurochem Int 42(4):345–351

    PubMed  CAS  Google Scholar 

  121. Guo H (2002) Human glioma cells and undifferentiated primary astrocytes that express aberrant EAAT2 mRNA inhibit normal EAAT2 protein expression and prevent cell death. Mol Cell Neurosci 21(4):546–560. doi:10.1006/mcne.2002.1198

    PubMed  CAS  Google Scholar 

  122. Zschocke J, Allritz C, Engele J, Rein T (2007) DNA methylation dependent silencing of the human glutamate transporter EAAT2 gene in glial cells. Glia 55(7):663–674. doi:10.1002/glia.20497

    PubMed  Google Scholar 

  123. Palos TP, Ramachandran B, Boado R, Howard BD (1996) Rat C6 and human astrocytic tumor cells express a neuronal type of glutamate transporter. Brain Res Mol Brain Res 37(1–2):297–303

    PubMed  CAS  Google Scholar 

  124. Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ (2010) In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol 97(1):11–23. doi:10.1007/s11060-009-9990-5

    PubMed  CAS  Google Scholar 

  125. Savaskan NE, Seufert S, Hauke J, Trankle C, Eyupoglu IY, Hahnen E (2011) Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas. Oncogene 30(1):43–53. doi:10.1038/onc.2010.391

    PubMed  CAS  Google Scholar 

  126. Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K (2012) l-glutamate released from activated microglia downregulates astrocytic l-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular l-glutamate concentration in neuroinflammation. J Neuroinflamm 9:275. doi:10.1186/1742-2094-9-275

    CAS  Google Scholar 

  127. Medina MA, Sanchez-Jimenez F, Marquez J, Rodriguez Quesada A, Nunez de Castro I (1992) Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem 113(1):1–15

    PubMed  CAS  Google Scholar 

  128. Portais JC, Martin M, Canioni P, Merle M (1993) Glutathione, but not glutamine, is detected in 13C-NMR spectra of perchloric acid extracts from C6 glioma cells. FEBS Lett 327(3):301–306

    PubMed  CAS  Google Scholar 

  129. Sidoryk M, Matyja E, Dybel A, Zielinska M, Bogucki J, Jaskolski DJ, Liberski PP, Kowalczyk P, Albrecht J (2004) Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas. Neuroreport 15(4):575–578

    PubMed  CAS  Google Scholar 

  130. Dranoff G, Elion GB, Friedman HS, Campbell GL, Bigner DD (1985) Influence of glutamine on the growth of human glioma and medulloblastoma in culture. Cancer Res 45(9):4077–4081

    PubMed  CAS  Google Scholar 

  131. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD, Dang CV, Riggins GJ (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70(22):8981–8987. doi:10.1158/0008-5472.can-10-1666

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98(11):6372–6377. doi:10.1073/pnas.091113598

    PubMed Central  PubMed  CAS  Google Scholar 

  133. D’Onofrio M, Arcella A, Bruno V, Ngomba RT, Battaglia G, Lombari V, Ragona G, Calogero A, Nicoletti F (2003) Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells. J Neurochem 84(6):1288–1295

    PubMed  Google Scholar 

  134. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8(9):971–978. doi:10.1038/nm746

    PubMed  CAS  Google Scholar 

  135. Matute C, Arellano RO, Conde-Guerri B, Miledi R (1992) mRNA coding for neurotransmitter receptors in a human astrocytoma. Proc Natl Acad Sci USA 89(8):3399–3403

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Patt S, Labrakakis C, Bernstein M, Weydt P, Cervos-Navarro J, Nisch G, Kettenmann H (1996) Neuron-like physiological properties of cells from human oligodendroglial tumors. Neuroscience 71(2):601–611

    PubMed  CAS  Google Scholar 

  137. Labrakakis C, Patt S, Weydt P, Cervos-Navarro J, Meyer R, Kettenmann H (1997) Action potential-generating cells in human glioblastomas. J Neuropathol Exp Neurol 56(3):243–254

    PubMed  CAS  Google Scholar 

  138. Labrakakis C, Patt S, Hartmann J, Kettenmann H (1998) Glutamate receptor activation can trigger electrical activity in human glioma cells. Eur J Neurosci 10(6):2153–2162

    PubMed  CAS  Google Scholar 

  139. Frithz G, Ronquist G, Hugosson R (1982) Perspectives of adenylate kinase activity and glutathione concentration in cerebrospinal fluid of patients with ischemic and neoplastic brain lesions. Eur Neurol 21(1):41–47

    PubMed  CAS  Google Scholar 

  140. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128(3):617–630

    PubMed Central  PubMed  CAS  Google Scholar 

  141. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43(2):143–181. doi:10.1080/10408360500523878

    PubMed  CAS  Google Scholar 

  142. Feun LG, Savaraj N, Landy HJ (1994) Drug resistance in brain tumors. J Neurooncol 20(2):165–176

    PubMed  CAS  Google Scholar 

  143. Bump EA, Brown JM (1990) Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther 47(1):117–136

    PubMed  CAS  Google Scholar 

  144. Brouazin-Jousseaume V, Guitton N, Legue F, Chenal C (2002) GSH level and IL-6 production increased in sertoli cells and astrocytes after gamma irradiation. Anticancer Res 22(1A):257–262

    PubMed  CAS  Google Scholar 

  145. Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, Kim DK, Inatomi J, Sawa H, Ida Y, Endou H (2001) Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta 1512(2):335–344

    PubMed  CAS  Google Scholar 

  146. Oh MC, Kim JM, Safaee M, Kaur G, Sun MZ, Kaur R, Celli A, Mauro TM, Parsa AT (2012) Overexpression of calcium-permeable glutamate receptors in glioblastoma derived brain tumor initiating cells. PLoS ONE 7(10):e47846. doi:10.1371/journal.pone.0047846

    PubMed Central  PubMed  CAS  Google Scholar 

  147. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci USA 98(25):14687–14692. doi:10.1073/pnas.251531398

    PubMed Central  PubMed  CAS  Google Scholar 

  148. Millan A, Arias-Montano JA, Mendez JA, Hernandez-Kelly LC, Ortega A (2004) Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors signaling complexes in Bergmann glia. J Neurosci Res 78(1):56–63. doi:10.1002/jnr.20237

    PubMed  CAS  Google Scholar 

  149. Millan A, Aguilar P, Mendez JA, Arias-Montano JA, Ortega A (2001) Glutamate activates PP125(FAK) through AMPA/kainate receptors in Bergmann glia. J Neurosci Res 66(4):723–729

    PubMed  CAS  Google Scholar 

  150. Golubovskaya VM, Huang G, Ho B, Yemma M, Morrison CD, Lee J, Eliceiri BP, Cance WG (2013) Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide. Mol Cancer Ther 12(2):162–172. doi:10.1158/1535-7163.mct-12-0701

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Hecker TP, Grammer JR, Gillespie GY, Stewart J Jr, Gladson CL (2002) Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Res 62(9):2699–2707

    PubMed  CAS  Google Scholar 

  152. Lindemann C, Hackmann O, Delic S, Schmidt N, Reifenberger G, Riemenschneider MJ (2011) SOCS3 promoter methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation. Acta Neuropathol 122(2):241–251. doi:10.1007/s00401-011-0832-0

    PubMed  CAS  Google Scholar 

  153. Yoshida Y, Tsuzuki K, Ishiuchi S, Ozawa S (2006) Serum-dependence of AMPA receptor-mediated proliferation in glioma cells. Pathol Int 56(5):262–271. doi:10.1111/j.1440-1827.2006.01954.x

    PubMed  CAS  Google Scholar 

  154. de Groot JF, Piao Y, Lu L, Fuller GN, Yung WK (2008) Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. J Neurooncol 88(2):121–133. doi:10.1007/s11060-008-9552-2

    PubMed  Google Scholar 

  155. Ciccarelli R, Sureda FX, Casabona G, Di Iorio P, Caruso A, Spinella F, Condorelli DF, Nicoletti F, Caciagli F (1997) Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and -5 on astrocyte proliferation in culture. Glia 21(4):390–398

    PubMed  CAS  Google Scholar 

  156. Lee SG, Kim K, Kegelman TP, Dash R, Das SK, Choi JK, Emdad L, Howlett EL, Jeon HY, Su ZZ, Yoo BK, Sarkar D, Kim SH, Kang DC, Fisher PB (2011) Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity. Cancer Res 71(20):6514–6523. doi:10.1158/0008-5472.CAN-11-0782

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A (2000) The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int 37(2–3):163–170

    PubMed  CAS  Google Scholar 

  158. Sontheimer H (2008) A role for glutamate in growth and invasion of primary brain tumors. J Neurochem 105(2):287–295. doi:10.1111/j.1471-4159.2008.05301.x

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Behrens PF, Langemann H, Strohschein R, Draeger J, Hennig J (2000) Extracellular glutamate and other metabolites in and around RG2 rat glioma: an intracerebral microdialysis study. J Neurooncol 47(1):11–22

    PubMed  CAS  Google Scholar 

  160. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015. doi:10.1038/nm0901-1010

    PubMed  CAS  Google Scholar 

  161. van Breemen MS, Rijsman RM, Taphoorn MJ, Walchenbach R, Zwinkels H, Vecht CJ (2009) Efficacy of anti-epileptic drugs in patients with gliomas and seizures. J Neurol 256(9):1519–1526. doi:10.1007/s00415-009-5156-9

    PubMed  Google Scholar 

  162. Matthew E, Sherwin AL, Welner SA, Odusote K, Stratford JG (1980) Seizures following intracranial surgery: incidence in the first post-operative week. Can J Neurol Sci 7(4):285–290

    PubMed  CAS  Google Scholar 

  163. Beaumont A, Whittle IR (2000) The pathogenesis of tumour associated epilepsy. Acta Neurochir 142(1):1–15

    PubMed  CAS  Google Scholar 

  164. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341(8861):1607–1610

    PubMed  CAS  Google Scholar 

  165. Fan G, Sun B, Wu Z, Guo Q, Guo Y (2004) In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clin Radiol 59(1):77–85. doi:10.1016/j.crad.2003.08.006

    PubMed  CAS  Google Scholar 

  166. Senner V, Kohling R, Puttmann-Cyrus S, Straub H, Paulus W, Speckmann EJ (2004) A new neurophysiological/neuropathological ex vivo model localizes the origin of glioma-associated epileptogenesis in the invasion area. Acta Neuropathol 107(1):1–7. doi:10.1007/s00401-003-0771-5

    PubMed  Google Scholar 

  167. Campbell SL, Buckingham SC, Sontheimer H (2012) Human glioma cells induce hyperexcitability in cortical networks. Epilepsia 53(8):1360–1370. doi:10.1111/j.1528-1167.2012.03557.x

    PubMed Central  PubMed  CAS  Google Scholar 

  168. Bianchi MG, Franchi-Gazzola R, Reia L, Allegri M, Uggeri J, Chiu M, Sala R, Bussolati O (2012) Valproic acid induces the glutamate transporter excitatory amino acid transporter-3 in human oligodendroglioma cells. Neuroscience 227:260–270. doi:10.1016/j.neuroscience.2012.09.055

    PubMed  CAS  Google Scholar 

  169. Aguirre G, Rosas S, Lopez-Bayghen E, Ortega A (2008) Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1. Neurochem Int 52(7):1322–1331. doi:10.1016/j.neuint.2008.01.015

    PubMed  CAS  Google Scholar 

  170. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77. doi:10.1038/nature03180

    PubMed  CAS  Google Scholar 

  171. Jacobs VL, De Leo JA (2013) Increased glutamate uptake in astrocytes via propentofylline results in increased tumor cell apoptosis using the CNS-1 glioma model. J Neurooncol 114(1):33–42. doi:10.1007/s11060-013-1158-7

    PubMed  CAS  Google Scholar 

  172. Sattler R, Tyler B, Hoover B, Coddington LT, Recinos V, Hwang L, Brem H, Rothstein JD (2013) Increased expression of glutamate transporter GLT-1 in peritumoral tissue associated with prolonged survival and decreases in tumor growth in a rat model of experimental malignant glioma. J Neurosurg 119(4):878–886. doi:10.3171/2013.6.jns122319

    PubMed  CAS  Google Scholar 

  173. Vanhoutte N, Abarca-Quinones J, Jordan BF, Gallez B, Maloteaux JM, Hermans E (2009) Enhanced expression of the high affinity glutamate transporter GLT-1 in C6 glioma cells delays tumour progression in rat. Exp Neurol 218(1):56–63. doi:10.1016/j.expneurol.2009.04.004

    PubMed  CAS  Google Scholar 

  174. Vanhoutte N, Hermans E (2008) Glutamate-induced glioma cell proliferation is prevented by functional expression of the glutamate transporter GLT-1. FEBS Lett 582(13):1847–1852. doi:10.1016/j.febslet.2008.04.053

    PubMed  CAS  Google Scholar 

  175. Iwamoto FM, Kreisl TN, Kim L, Duic JP, Butman JA, Albert PS, Fine HA (2010) Phase 2 trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas. Cancer 116(7):1776–1782. doi:10.1002/cncr.24957

    PubMed Central  PubMed  CAS  Google Scholar 

  176. Grossman SA, Ye X, Chamberlain M, Mikkelsen T, Batchelor T, Desideri S, Piantadosi S, Fisher J, Fine HA (2009) Talampanel with standard radiation and temozolomide in patients with newly diagnosed glioblastoma: a multicenter phase II trial. J Clin Oncol 27(25):4155–4161. doi:10.1200/jco.2008.21.6895

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by US National Institutes of Health grants R01NS052634, 2T32NS048039, and T32GM008361. The authors would also like to thank Dr. Sue Buckingham for her help in the editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Sontheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, S.M., Sontheimer, H. Glutamate transporters in the biology of malignant gliomas. Cell. Mol. Life Sci. 71, 1839–1854 (2014). https://doi.org/10.1007/s00018-013-1521-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1521-z

Keywords

Navigation